

 [image: OOP in WordPress]

 OOP in WordPress

 Series of articles by Tom McFarlin, published on code.tutsplus.com

 Object-Oriented Programming in WordPress: An Introduction - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-an-introduction--cms-19916

 One of the things that people love (and hate, but that's another series) about WordPress is its low barrier of entry.

 That is to say that for the average programmer, it's pretty easy to pick up and begin building projects on top of itespecially if you're someone who is comfortable with front end development.

 Of course, if you're interested into extending WordPress through plugins, widgets, or even opting to pursue building a web application on top of WordPress, then it's a little bit tougher to learn the ropes. In fact, when it comes to building widgets, you generallyhave to use object-oriented programming if you follow the template provided in the Codex. Additionally, it's becoming more common to see object-oriented programming used for larger plugins, as well.

 This paradigm - though not the silver bullet some would have you believe - is popular for a number of reasons, but before we cover that, it's important to understand the purpose of this series and where we're headed over the next few weeks.

 "Where Do I Start?"

 For anyone remotely interested in learning a new language, tool, or framework, it's relatively easy to get started, especially if you have a background in programming.

 But those who have been at it for a significant amount of time often forget what it was like when originally trying to figure out how to decipher code, understandwhy something was written the way that it was,how the author knew to use what function and where, and determine the rationale behind certain implementation decisions.

 We've all been there at some point, right? We've looked at the code, tried to figure out the flow of control, and at one time asked "where do I even start?"

 And the purpose of this series is to answer that question.

 Object-Oriented Programming For Beginners

 Specifically, this series is going to focus solely on those who are wanting to learn to build more complex solutions with WordPress. You may be someone who is comfortable with building themes and/or simple plugins, but are looking to advance your skill set by learning object-oriented programming.

 The challenge, of course, is learning where to start. Sure, there's a lot of material that's available on the web and in books in terms of the basic concepts of object-oriented programming, but I believe that it's often easiest to learn a new paradigm within the context of an actual foundation or framework.

 So over the next few articles, we're going to start from the ground up by looking at object-oriented programming within the context of WordPress.

 We'll be covering topics such as:

 	classes

 	attributes

 	constructors

 	functions

 	scope

 	interfaces

 	abstract classes

 	abstract functions

 	...and much more.

 By the end of the series, you be well-equipped to at least have a working understanding, and a solid reference that you can look back to throughout your time with WordPress.

 What's Next?

 Ultimately, we want to work on not only understanding how object-oriented programming works, but also work on putting it to practical use by building a working plugin. So as we cover the basics of object-oriented programming within the context of WordPress, we're going to work on building a plugin to demonstrate the features of the paradigm.

 With that said, we're ready to get started.

 In the next article, we're going to start by looking at the fundamental building block of object-oriented programming: Classes.

 Object-Oriented Programming in WordPress: Classes - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-classes--cms-20021

 As outlined in the first post in this series, we're approaching the concept of object-oriented programming within the context of WordPress, and we're doing so for theverybeginner.

 That means that if you've never heard of OOP, of if you've been curious to learn it,and you're someone who is interested in WordPress and learning how to develop solutions on top of it, then this series is for you.

 Over the next set of articles, we're going to be covering all of the major aspects of object-oriented programming. Once we do that, we're going to look at how we can apply what we've learned by building a working solution for WordPress.

 But first, we've got to start with the basics.

 What Are Classes?

 If you were to ask 10 different developers for their definition of a class, you'd likely get manysimilar answers, but few of which were actually the same. In fact, the one I heard repeated the most often when I was younger went like this:

 A class is a blueprint for creating an object.

 In theory, it sounds greatespecially if you know what an object is. But that's the problem, isn't it? We're trying to learn about object-oriented programming, so there's no guarantee that we even know what an object is; therefore, how can we understand that a class serves as a blueprint for it?

 In a sense, it's begging the question.

 So let's back up a few steps and define what an object is in order to more clearly define what a class is.

 Understanding Objects

 The whole idea of the object-oriented programming paradigm is that we, as programmers, can more easily model the information that we see in the real world using constructs in a code.

 For example, in the real world we have objects that can be described using adjectives, and these objects can perform actions. Though this may be a bit cliche, think for a moment, about a car:

 	It has several adjectives such as size and color.

 	It can drive and it can park.

 Again, a simple example, but it proves the point that everything that we have in the real world can usually be reduced to a noun that can be described by its adjectives and the actions that it performs.

 So let's generalize this idea to objects. In fact, let's substitute one word for another:

 	A noun is an object.

 	An adjective an an attribute (or a property).

 	A verb if a method (or a function).

 Easy enough, right? The short of it is that we should be able to describe the things that we see in the real world as objects within a programming paradigm. Note that some languages call attributes properties, and some call methods functions. It doesn't really matter, either - it's all the same. They simply refer to adjectives about the object and actions that it can take, respectively.

 Poor Examples

 Next, most programming courses or booksalways start off with an example about how objects are meant to model real world objects (similar to like I did with the car example above).

 And to some degree, there is truth to that. For those whohave been working in development, then you're likely familiar with how we can model people within the context of our application, but that's getting ahead of ourselves.

 Though it's true that we can use object-oriented programming to model real world objects, I've found that, more often that not, I'm modeling a more generalized form of a real world object - such as auser rather than aperson - and that the actions they perform are more unique to them.

 To that end, the examples that I want to give throughout this article and those in the rest this series are going to be more geared towards practical applications in computer programming. No one is going to be writing a car plugin and no one is going to be creating an animal object (which is something that you also often see and hear in introductory programming courses).

 Instead, we're going to try to focus a bit more on objects that are more likely to be seen in the realm of programming - not in the real world. Not because object-oriented programming is weak, but because the way we go about teaching is weak.

 Good Examples

 Of course, this raises the question of what constitutes a good example? The trouble with answering a question like this is that it can literally be a wide, wide variety of things.

 This includes objects such as:

 	a blog post,

 	a document such as a resumé,

 	an authenticator or authentication system,

 	a product,

 	a password generator,

 	...and so on.

 And you see: Many of these things don't truly exist in the real world. For example, blog posts aren't tangible. They are things that we read on our screens. But does that mean they don't have properties such as a date, a time, and an author? Or does it mean that they don't have actions such as publish, and delete?

 Of course not.

 So as we progress throughout this series, we're going to be talking about object in terms of the things with which we're more likely to work.

 I don't see us programming an animal - and certainly not so in WordPress - at any time during this series :).

 Back to the Basics

 Alright, now that we've taken a brief digression intowhat objects actually are, and good and bad examples of each, it's time to actually start talking about classes and how they truly serve as blueprints for objects.

 In programming, an object is created from a class. That means that a class defines all of the properties an object has and the actions that it can take, and then the computer will create an object in memory.

 When it comes to classes, you may hear developers discuss writing classes, defining classes, or building classes. Any and all of these terms are acceptable.

 After that, you may hear developers talking about creating objects. The act of creating an object is called instantiation. Yeah - it's a big word for a relatively simple concept. But think of it this way: When you have a class, you have a definition out of which you can create multiple instances of an object.

 If we need to draw an analogy to the real world, think first about a set of blueprints for a house. It lays out the floor plan, dimensions, walls, and so on that give construction workers information on how to build a house. Then, when it comes time to actually construct a house, then a team of construction workers erect the house based on the blueprint.

 Such is the case with classes, instantiation, and objects. Classes are the blueprints, the computer is the team of construction workers, and the objects are the house. And just as multiple houses can be erected from a single blueprint, such is the case with objects and classes.

 The Mental Models of Classes and Objects

 When it comes to writing code, some people are able to picture the object in their heads - others, maybe not.

 Personally, I think that this has more to do with how each of us tend to learn and process information, but I do believe that it's possible to begin to mentally picture how software systems work together the longer you write code.

 Here, we're not going to look at any complex system; however,are going to take a look at an example of a class and then a visual representation of what that might look like in terms of code and in terms of a mental image.

 A Class for a Blog Post

 Since we're dealing with WordPress, perhaps an initial example for a class would be one that represents a blog post.

 Granted, this will be a simple example to demonstrate the ideas of attributes and functions, but we'll cover various constructs in more details in future articles.

 So, with that said, let's say that we're going to create a class for a blog post. Let's also say that our blog post will have an author, a date on which it was published, whether or not it is published, and the actions to publish and delete.

 An example class definition for a blog post with these attributes and functions will look like this:

class Blog_Post {

 private $author;

 private $publish_date;

 private $is_published;

 public function publish() {
 // Publish the article here
 }

 public function delete() {
 // Delete the article here
 }

}

 For those who are familiar with object-oriented programming, you may recognize some of the information above, and you may also recognize that I've left out certain things (such as the constructor). Don't worry about that - we'll cover those concepts later.

 For those who are completely new to programming, this is what a basic class definition looks like. For the time being, don't worry about the words private and public as we'll cover those later.

 Instead, focus on $author, $publish_date, and$is_published. These are the attributes. Notice that they sit above the function definitions in the class. These are analogous to adjectives that describe the Blog_Post.

 Next, we have the functions publish() and delete(). These two functions are the actions that can be taken on theBlog_Post. Remember, just how objects in the real world can move (like a car can drive), a blog post can be published.

 A Visual Representation

 So what happens when you actually instantiate a blog post? That is to say, when we create a blog post in code, how can we mentally picture what's happening within the computer.

 First, let's outline how a blog post is instantiated. Remember, instantiated is a word just like erected is for construction workers - it's how an object is created from a class.

 Next, let's see how we can use the single class definition to create three different blog posts:

$first_post = new Blog_Post();
$second_post = new Blog_Post();

 Easy enough to read, right? Above, we've created two variables that will reference two completely different Blog_Post objects.

 Note that although we'll talk about this more in a future article, the word new is what instructs the computer to instantiate a Blog_Post from us from the class definition.

 So let's take a look at the first example where we get our first instance of Blog_Post.

[image:]

 Notice in this illustration, we have the $first_post variable that refers to the instance of the Blog_Post that was created. The Blog_Post exists in the computer's memory, it has its attributes that are available as well as its methods that are available.

 We can access all of these through the $first_post variable that references this object. We'll talk about that in more detail later in the series.

 But what about the $second_post? How doesthat look within the context of object-oriented programming?

[image:]

 If you compare the two illustrations, they look pretty much the same, right? $first_post references one instance of Blog_Post, $second_post references a second instance of Blog_Post even though theyboth came from a single class.

 Note that for those who are technically astute, itis possible for both variables to reference a single instance, but that's outside the scope of this article.

 What's Up Next?

 Anyway, at this point, you should have a high-level understanding of what a class is, the role it plays in object-oriented programming, and how we can create instances of objects that are accessible through variables.

 This still doesn't show us how to interact with the classes though, does it? We'll get to that, but first we need to discuss some of the more primitive aspects of programming such as strings, arrays, loops, and conditionals.

 Each of the aforementioned constructs will help us give life to our objects, and once we've taken a tour of each of those, we'll come back to make more mature classes that can actually do work.

 Object-Oriented Programming in WordPress: Types - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-types--cms-20299

 For those who are just starting this series, note that we are taking a look at object-oriented programming using PHP within the context of WordPress.

 The Target Audience

 We're doing so from the perspective of theverybeginner, so if you're an experienced developer, or are familiar with many of the aspects of object-oriented programming, then this series is probably not for you.

 With that said, if youare interested in learning object-oriented programming in PHP and you do consider yourself a beginner, then we're going to continue the series in this article by talking about some of the data types that PHP offers.

 But first, make sure that you've caught up on the previous articles in the series as they each build on one another:

 Once you're all caught up, we can begin talking about types.

 What Are Types?

 We ended the last article with the following:

 We'll get to that, but first we need to discuss some of the more primitive aspects ofprogramming such as strings, arrays, loops, and conditionals.

 Now, strings, arrays, and so on are what we consider types. Loops and conditionals are what are known as control structures which we'll be covering in the next article.

 So in the meantime, let's come up with a simple term for what a data type represents so that we know how to conceptually model them moving forward not only with this article, but with the rest of the content in the series.

 For anyone who has writtenany code that includes variables, then you've likely seemed something like the following:

 	
 $name = 'Tuts+ WordPress';

 	
 $is_active = true;

 	
 $age = 42;

 	...and so on.

 In the most basic form, you'll likely hear the above code defined as variables with definitions, and that's correct, but it's a very generalized definition.

 You see, whenever you define a variable in PHP, you so by prefixing the variable with $. This lets PHP know that you're defining a variable, and that it will represent a typical value.

 Easy enough, right?

 The thing is, there are differenttypes in PHP. For those who are coming from what are known as "strongly-typed languages," we'll talk about that more momentarily, but know that PHP offers the following data types:

 	booleans

 	integers

 	floating point numbers

 	strings

 	arrays

 	objects

 	...and mor

 Everything from booleans through strings can be thought of as a simple data type where as arrays and objects can be considered more complex data types.

 Simple Data Types

 Simple data types are defined as such because the data that they represent is, y'know,simple. That is to say that it will normally fall under the banner of true, false, decimals, and words and/or sentences.

 To give concrete examples of each of the above:

 	Boolean values are intended to hold the value of true or false.

 	Integers refer to any whole numbers. That is to say that it includes no fractional or decimal components to it. This includes numbers such as -12, -2, 1, 100, 5000, and so on.

 	Floating Point Numbers are kind of the opposite of Integers in that theydo represent values with fractional parts. So, for example, you may see 3.1459, 2.5, 100.25, and so on. If you were to try to save the value of, say, 3/4 then you'd actually save .75unless you saved it as a string. That is, you were to save '3/4'. Notice the subtle delineation between the two? One has quotes and one does not.

 	Speaking of strings, strings represent any single word or set of alphanumeric characters that make up a series of letters and numbers. This may be a single word, it may be sentence, it may be sentences, and it may be a random series of characters such as an encrypted string. Examples of strings include 'phrases like this' or a single 'word' or even something more complex like 'e952098vjdkw94kd'.

 Here's the catch, though—any of the above data types can be converted into strings by wrapping them in quotation marks.

 But There's a Catch

 For example, if you were to work with the boolean value of, say, true but you were to store it in a variable like this: $is_active = 'true'; then you've actually just created a string that reads true.

 Similarly, if you were to write a string that read $age = '42'; then you've created a string containing the number 42,not an integer.

 Make sense?

 The reason that this matters is because when it comes time to working with control structures—which we'll review in the next article—is that sometimes, running comparison can have unintended consequences if you're not surewhich data type with which you're working.

 Complex Data Types

 In addition to simple data types, we also have complex data types which, in my opinion, aren't reallythat complicated. In fact, I think of it as a fancy way of saying that we have ways of storingmultiple pieces of information into a single variable; whereas, with simple types, we have a way to store single pieces of information in a single variable.

 Pretty easy to remember, right? So what are some of the more complex data types?

 The two primary complex datatypes that we're going to focus on in this series as arrays and objects. There are more, but they are outside the scope of this series, so if you're interested, then feel free to take a look at the PHP manual, but I warn you: if you're an absolute beginner, the content may feel a little overwhelming.

 	Arrays are ways of storing multiple pieces of information into a collection. Consider, for a moment, that you have a set of names that you want to store into a collection aptly called $names. In PHP, you'd define an array and assign it to a variable like this: $names = ['John', 'Paul', 'Ringo', 'George']; Notice here that we have an array of strings, but another aspect of PHP arrays is that they can hold multiple data types. That means you can have an array that looks like $various_types = [42, TRUE, 'Star Wars', .007];. Kinda cool, right?

 	Associative Arrays are just like standard arrays that we see about except that they are made of key value pairs. This means that each value is retrieved by a key, so if we were to convert the first array into an associative array, then it may look something like this: array('rhythm-guitar' => 'John', 'bass' => 'Paul', 'lead-guitarist' => 'George', 'drums' => 'Ringo'); If the format looks like weird right now, don't worry about it! We'll be taking a look at these in much more detail later in the series. The primary take away is that standard arrays are index numerically - that is, 0, 1, 2, 3, and so on - and associated arrays are indexed by their keys such as 'rhythm-guitar', 'drums', and so on.

 	Objects, which we touched on last time, are arguably the most complex of the data types offered by PHP because they are a combination of everything. Their attributes are made up of data types or even other objects, they are functions, and they perform operations not only on other simple data types, but on complex data types as well.

 As far as objects as concerned, the best way to see just how complex they can get is to see them in action, which we will be sure to do when we build building a plugin.

 A Note About Arrays

 Note that in some languages, the size of the array must be declared before you can actually use it. For example, in C, you have to tell the compiler that the array will hold exactly, say, 10 values.

 In the case of PHP, this isnot the case. PHP's array are dynamic meaning that you can continue to add data to the array without needing to increase its size. Yes, as with anything, there are limits, but it's usually related to the size of the data being stored, or the amount of memory that a machine has available.

 Don't Let the Phrases Intimidate You!

 But for the time being, don't let the wordssimple andcomplex intimidate you. Granted, "simple" is relatively straightforward, right? But "complex" has this connotation that it's going to be hard to understand, and that's not true - hopefully this article is demonstrated that.

 Complex data types can simple hold multiple pieces of data. Simple data types cannot.

 Are There More?

 Yes, there are. Namely resources, callbacks, and pseudo-types. Most of these are out of the scope for this particular series; however, wemay end up using callbacks (which are a certain type of functions) later when we begin building our plugin.

 Feel free to read up on these as much as possible, but know that they are beyond the scope of the content that we'll be covering through this particular series, so if you feel overwhelmed by them, perhaps revisit them once the series is complete.

 A Word About Strongly-Typed Languages

 Some programming languages are known what is dynamically-typed (or weakly-typed) where as others are known as strongly-typed languages.

 This is another case in which the terminology often intimidates new programmers rather than empowering them to know how to use the tools that are available to be, but the distinguishing factorings among the two is really quite simple:

 	Strongly-typed languages means that the variables must first be declared as a certain type and they canonly hold a certain type of data. For example, if I wanted to hold a string, then I would declare the variable as string sMyName; Then, I would store a string into the variable. sMyName = 'Tom McFarlin';. This means that the sMyName variable canonly hold strings. If you try to store another data type in that variable, then the compiler will throw an error.

 	Dynamically-typed languages, such as PHP, allow a single variable to hold multiple types at any given point of execution. In using the example above, I could use as easily say$my_name = 'Tom McFarlin'; as I could $my_name = false.If you try to store another data type in that variable, then it works fine. You can see that this has both advantages as disadvantages.

 Where To Next?

 Before we return to the world of object-oriented programming, we need to talk about a a few additional basic structures of programming such as control structures.

 These include things such as loops, conditionals, and so on that can impact the flow of code throughout the lifetime of the program. Additionally, they work hand in hand with the data types that we've outlined here.

 So before we head into the next article, make sure that you review everything that's going on here, leave comments, questions, and feedback in the comment feed.

 I'll see you in the next article!

 Object-Oriented Programming in WordPress: Control Structures I - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-control-structures-i--cms-20532

 For those of you who have been following along with the series thus far, then you know we are taking a look at object-oriented programming specifically from the perspective of a beginner.

 This means that we're approaching the topic not only for those who are looking at how to get started with the paradigm, but we're looking at all of the various features of PHP that make up the language and that are ultimately used within the context of object-oriented programming.

 Additionally, we're doing all of this within the context of WordPress so that, by the end of the series, we can see how a practical application of how all of this can be used within a real world example.

 If this is your first time reading an article in the series, then I highly recommend checking out the previous articles as each article in this series builds on the one before it.

 So far, we've covered the following:

 	
 An Introduction

 	
 Classes

 	
 Types

 In this article, we're going to be talking about control structures.

 What Are Control Structures?

 "Control Structures" is a fancy term term that describes how we can,ahem, control how the code flows through our program based a number of factors.

 For example, let's say that we want to progress through a certain set of instructions, but you want to dosomething if one variable is set, or another set of instructions of another variable is set.

 Or let's say that you have a set of data that you want to loop through reading each value, setting each certain values, or even creating certain values.

 Whatever the case may be, the way that you go about doing this is through the use of control structures. In the remainder of this article, we're going to be covering two types of control structures: Conditionals and Loops.

 Though conditionals and loops are the types of control structures that we're going to be reviewing, there are subsets of each.

 For example, conditionals have:

 	
 if/then statements

 	
 switch/case statements

 Loops, on the other hand, have a few other variations:

 Though these may be new constructs for some of you, we've already covered the basics in the previous articles, so we have everything that we need to move forward.

 Conditional Statements

 In my opinion, conditional statements are some of the easiest to understand as they read more like sentences than many other types of programming statements. For example, if you're literally saying "if this condition is true, then do this action; otherwise, do this action."

 Sure, it gets alittle more complicated than that if you have, say, a few other conditions to check before deciding on a course of action, but the gist of it remains the same.

 So with that said, let's start by taking a look at one of the two variations of conditionals that are offered by PHP.

 if/then Statements

 As previously mentioned, the most basic conditional statement is of the form if/else, and you'll generally see it written like this:

<?php

if (condition) {
 // Take on action
} else {
 // Take another action
}

 Of course, this still doesn't really explain how the control structure works, does it? I mean, Sure, it provides a bit of a skeleton for how to take a look at it, but it leaves more to be desired.

 Namely, what is thiscondition line? Secondly, what are courses of action that the control structure can take?

 First, thecondition refers to any statement that can be evaluated as a boolean expression. Make sense? Simply put,condition represents any statement that can be evaluated as true or false.

 So, for example, let's say that we have two values:

 These are obviously somewhat generic values, but let's say that if $is_active is set to true, then we'll increment the $total_count by one; otherwise, we'll subtract the $total_count by one.

 This is how it may look in code:

<?php

$is_active = true;
if ($is_active) {
 $total_count = $total_count + 1;
} else {
 $total_count = $total_count - 1;
}

 In the above example, $total_count will be increased by one because $is_active evaluates to true.

 Alternatively, let's say $is_active is set to false.

<?php

$is_active = false;
if ($is_active) {
 $total_count = $total_count + 1;
} else {
 $total_count = $total_count - 1;
}

 In thisexample,$total_countwill be decreased by one because$is_activeevaluates to false.

 Now, before we look at the next example, it's important to understand that these are extremely trivial examples. The purpose of these examples is not to showcase how to take complex operations and to combine them into the conditional constructs, but instead how touse the conditional constructs.

 When we get to the part of the series that has us beginning to write a plugin, then you'll see how we can use more elaborate expressions within a practical application.

 With that said, let's look at one more examples of if/then statements. In this example, we'll take a look at if/elseif/else. To get started, let's assume that $is_active is set to true and $total_count is set to 10.

<?php

$is_active = false;
$total_count = 10;

if ($is_active) {
 $total_count = 1;
} else if ($total_count >= 10) {
 $total_count = $total_count + 1
} else {
 $total_count = $total_count - 1;
}

 The above code can be read like this:

 	If $is_active is set to true, then set the $total_count to one. $is_active is not true.

 	Otherwise, if the $total_count is greater than or equal to 10, then increment the $total_count by 1. The $total_countis equal to 10, so we'll increment the $total_count to 11.

 	If $total_count was not greater than or equal to 10, then we'd decrement the $total_count by one.

 By the time the block of code finishes executing in the above example, $total_count will be equal to 11.

 Make sense?

 This is why we call these control structures: These statements (or evaluations) allow us to determine what code to run based on certain conditions.

 For those who have been programming for a while, you're familiar with more complex expressions using operators such as && and || and so on. We'll eventually get to that, but not in this article.

 All that say, it's a topic I'm aware of and that we'll cover, but not today.

 Anything Else?

 For those of you who are more experienced with programming, then you're likely familiar with the ternary operator.

 We're not going to be taking a look at that in this particular series of articles as it's outside the scope of what we're looking to cover; however, if you're feeling adventurous and are looking for a more concise way to write a simpleif/elsestatements, then checkout theternary operator in the PHP manual.

 switch/case Statements

 With that said, there's one more type of conditional that we need to take a look at before moving on to the next topic.

 This particular construct still falls under conditional statements; however, I'd argue that you'd see it used less frequently than its if/else counterpart.

 As the title denotes, this is called the switch/case statement. Though I personally think that the language makes it a little more convoluted to follow, the way in which control flows through the evaluations isn't much different from what we've already seen.

 Like we did with the if/else statements, let's first look at how the switch/case is structured and then we'll take a look at a couple of trivial examples.

<?php
switch (condition) {

 case 'value':
 // do action
 break;

 case 'another value':
 // do a different action
 break;

 default:
 // perform a default action
 break;

}

 The first thing to note about this particular type of conditional, is that the evaluate happens in a single place: at the top of the block of code right next to the switch statement.

 Here, the evaluation happens once and then each of the subsequent case statements is what dictates which action is taken. There is also a break statement included with each of the statements that we'll discuss, and there is also a default block of code at the bottom that we'll discuss by the end of the article, as well.

 But before we do any of that, let's setup a slightly more practical example of what a basic switch/case statement looks like.

 Let's assume that we have a value, $first_name, and then we want to take a certain course of action based on the person's first name. In this example, we'll set a person's email address based on their first name. If we don't recognize the person's first name, then we'll set the value equal to null.

 Sure, it's a bit of a contrived example, but it will demonstrate the point:

<?php

$persons_name = 'Tom';
$email_address = '';

switch ($persons_name) {

 case 'Tom':
 $email_address = 'tom@acme-server.com';
 break;

 case 'David':
 $email_address = 'david@acme-server.com';
 break;

 default:
 $email_address = NULL;
 break;

}

 Let's look at the flow of control in the above example:

 	We define a $persons_name as 'Tom' and we initialize the $email_address as an empty string.

 	We then pass the $persons_name to the switch statement for evaluation.

 	The control structure will evaluate the $persons_name against each value specified in the case statement.

 	Since 'Tom' is the value of the $persons_name, then the $email_address will be set to 'tom@acme-server.com'

 If we were to pass 'David' as the $persons_name then $email_address would be set to 'david@acme-server.com'.

 Next, if we were to passany other name than 'Tom' or 'David', then the $email_address would be set to NULL. It's also important to note that switch/case is case sensitive. This means that if you were to pass 'tom' instead of 'Tom', then they would be treated as different cases.

 Finally, note that each case ends with a break statement. This is important because break instructs the code to hop out of the switch/case statement and continue working on whatever code comes next.

 It's extremely important to understand that if you forget a break statement, then it will immediately fall down to thenext case statement which can obviously have erratic results (such as setting the wrong $email_address).

 One example to where you can leverage this to your advantage is like this:

<?php

$persons_name = 'Tom';
$email_address = '';

switch ($persons_name) {

 case 'tom':
 case 'Tom':
 $email_address = 'tom@acme-server.com';
 break;

 case 'David':
 $email_address = 'david@acme-server.com';
 break;

 default:
 $email_address = NULL;
 break;

}

 In the above example, we've defined cases for both 'Tom' when it's lowercase or has the first letter capitalized and demonstrates how the code will fall through to the next case statement.

 But there's an even better way to make this more bulletproof:

<?php

$persons_name = 'Tom';
$email_address = '';

switch (strtolower($persons_name)) {

 case 'tom':
 $email_address = 'tom@acme-server.com';
 break;

 case 'david':
 $email_address = 'david@acme-server.com';
 break;

 default:
 $email_address = NULL;
 break;

}

 Notice that this takes the PHP function strtolower in order to force the incoming $persons_name to be completely lowercased. This allows us to refine our case statements even more.

 What's Up Next?

 In this article, we looked at the first of two groups of control structures that are available to us in PHP. No, these are not explicitly part of object-oriented programming, but before we actually get to talking about more fundamentals aspects of the paradigm, we need to understand all of the finer points that allow us to write object-oriented code.

 To that end, we're going to continue this discussion on control structures in the next article by looking at loops.

 After that, we'll be ready to turn our attention to functions. For those who are familiar with procedural programming, then functions are nothing new; however, if you're new to object-oriented programming, then there are a number of factors that differentiate them from how they are used in procedural programming.

 So that's the roadmap for the next set of articles. As usual, feedback is always welcome and I look forward to continuing our discussion in the next article.

 Object-Oriented Programming in WordPress: Control Structures II - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-control-structures-ii--cms-20636

 If you've been tracking with us throughout this series, then you no doubt know that we're looking at the concepts of object-oriented programming from the beginner's perspective.

 Specifically, we're looking at the topic for those who want to familiarize themselves with the paradigm, but also with how to apply the concepts within the context of WordPress; however, before we get into working withobject-oriented programming and WordPress, we have to lay the foundation using the basic features that PHP provides.

 Ultimately, we're working towards creating a practical example of object-oriented programming by creating a WordPress plugin. But before we do that, there are a few more things that we need to discuss.

 If this is your first time reading this series, then I recommend checking out the previous articles as each article in this series builds on the one before it. If, on the other hand, you're someone who is more familiar with object-oriented programming, then you may want to revisit the series once we're getting into the practical application of the ideas.

 Up to this point, we've covered the following topics.

 	
 An Introduction

 	
 Classes

 	
 Types

 	
 Control Structures: Conditional Statements

 In this article, we're going to wrap up our discussion on control structures by looking at the various types of loops that PHP provides.

 A Review of Control Structures

 If you've read the previous article, then you recall that "control structures" refer to constructs that are provided by the language (in our case, PHP) that allow us to modify how code throughout the program based on a number of conditions.

 In the last article, we looked at how we can do this through the use of conditional statements which are statements that will force the program down a path of execution based on a conditional (such as if a variable is set, if a condition is true, and so on).

 Loops

 But that's not the only type of control we have. In addition to conditionals, we have the ability to iterate (or loop) through sets of data so that we can take action on each item in a set of data. We can add data, remove data, display data, sort the data, and much more.

 For example, let's assume that we have a set of data, perhaps a set of 10 posts, and that we want to loop through and print out the title and date of each post. Loops allow us to do this.

 Whatever it is that you're looking to do, there are four types of loops that PHP provides that allow us to loop through sets of data. In this article, we're going to look a examples of each as well as some nuances of each one so that we've got yet another set of control structures that we can use when the time comes to begin writing object-oriented code.

 for Loops

 The for loop is often considered to be the most complicated of the loops because of the nature of how you write the code. The flow of it reads a bit unnatural.

 Typically, we're used to writing code line-by-line such that each instruction is set on a single line; however, with for loops, we have a slightly different approach. First, I'll share a basic example, we'll cover the aspects of it, and then we'll look at a more detailed approach.

 Here's a basic example that will count to 10 and will display each number on the screen as it does so:

for ($i = 0; $i < 10; $i++) {
 echo $i;
}

 In the first line of loop (within the parentheses after the for statement), we're doing the following:

 	initializing a variable $i and setting it equal to zero

 	setting a condition for this to continue running while $i < 10

 	incrementing $i by the value of 1 (using the post-increment operator) after each iteration

 In the body of the loop, we're simply using PHP's echo function to print the current value of $i. As the loop processes the instructions, we'll see 0 - 9 printed out on the screen (since we're starting at zero and running while $i is less than 10).

 Different people have different techniques for how they read code, so the strategy that I am going to recommend may not be the best for you, but when I read these types of loops, I normally read them like this:

 With $i starting at zero, and while $i is less than 10, execute the body of the loop, then increment $i by 1.

 The catch is that $i can start at any value, can count up to an arbitrary amount, and can be incremented by any value.

 The more work we do with for loops, the more likely you're going to catch a few things that can optimize performance. For now, however, the basics of the for loop have been covered and the advanced techniques are a bit outside the scope of this particular article.

 foreach Loops

 foreachloops are similar to for loops as they iterate through a dataset, but they do so sequentially. This means there's no easy way to iterate through every, say, two items in a list (as you can with, say,$i + 2 in for loops).

 This type of loop is arguably the most readable. For our example, let's assume that we have an array and the array of data contains the following names: Alpha, Bravo, Charlie, Delta, Echo, and Foxtrot. The name of the array is stored in a variable called $names.

 In this case, we can setup a foreach loop to iterate through the names and display each of them on the screen like this:

$names = array('Alpha', 'Bravo', 'Charlie', 'Delta', 'Echo', 'Foxtrot');
foreach ($names as $name) {
 echo $name;
}

 Pretty easy to setup, isn't it?

 Just as we shared one way to read the initial for loop in the previous section, you can read the foreach loop in the following way:

 For each name in the collection of names, display it on the screen.

 Or, perhaps more generally:

 For each element in the collection, display it on the screen.

 Anything Else?

 There's one other aspect to the foreach loop that we may cover in more detail later in the series, but the main idea is that if you're familiar with associative array, that is, arrays that are indexed with a key and that have an associated value, you can setup a foreach loop to retrieve each key and value for each iteration of the loop.

 For example, let's say that we have the following associative array:

$heroes = array('alien' => 'Superman', 'human' => 'Batman');

 When using an associative array like this, you can also setup a foreach loop like this:

foreach ($heroes as $type => $name) {
 echo $name . ' is a ' . $type;
}

 This will result in the output reading something such as 'Superman is an alien' because 'Superman' is the value and 'alien' is his type (or his key).

 The more generic form of this loop is as follows:

foreach ($collection as $key => value) {
 // Work goes here
}

 Nothing terribly complicated.

 while Loops

 With the variations of the for loops covered, it's time to turn our attention to while loops of which there are two variations (although they are called something different: while loops and do loops), but they differ only in a minor way.

 But before we look at how they differ, let's take a look at the while loop, its basic format, how to use it, and how it compares with the previous for loops.

 First, the basic format of a while loop is as follows:

while (condition) {
 // do work
}

 Notice that this loop differs than our previous loops in that it accepts a conditional as part of the initial statement (hence the reason we covered conditionals in our last article).

 The loop works by first checking to see if the condition is true, executing the block of code in the loop body, and then checking the condition again. This means that while loops can doany unit of work as long as the specified condition evaluates to true.

 So, sure, you can iterate through a list of numbers, run through a collection of data, but you can also do certain things while, say, a boolean value is still true. And once the flag is reaches false, then the while loop will terminate.

 Let's look at an example where we're popping elements off of an array. Let's assume that the initial array has 100 elements and that we'll do this until the array has 50 elements left:

while (50 !== count ($elements)) {
 array_pop($elements);
}

 Here, the condition will continue evaluating to true until the number of the items in the $elements array has been reduced to 50 items.

 As we've done with previous loops, this is one way that you can read a while loop:

 While this condition is true, execute the following code.

 Of course, that's how about it looks in code anyway, isn't it?

 do Loops

 Finally, do loops are almostexactly like while loops except there will iterate at least one time before checking the condition.

 Before taking a look at an example, here's the basic structure of the do loop:

do {
 // do work
} while (condition);

 Relatively clear, right?

 So let's setup a very basic example that has us creating an array and populating it with even numbers only. To do this, we need:

 	an array to hold the numbers

 	a variable to hold what how many times we've iterated through the first 100 even numbers

 With that said, one may setup the code to look like this:

$i = 1;
$even_numbers = array();

do {

 if (0 === ($i % 2)) {
 $even_numbers[] = $i;
 }

 $i++;

} while ($i <= 100);

 And finally, as with the rest of the loops, you can read these types of loops in the following way:

 Do the following block of work, then check to see if the following condition is true. If so, continue doing the work.

 Anything Else?

 When it comes to do loops, if you're working with a collection, you want to make sure that the collection isnot empty before working on it because it will execute the code in the block of the loop before checking to see if the condition is true. This can result in errors if you try to work on a data set that is empty.

 Of course, if that's what you're planning to do, then one of the other loops is better optimized for that kind of operation.

 Only use do loops when you have a set of data or you're going to be executing a procedure that youknow needs to execute at least once before checking on the condition that dictates the number of executions that should be performed.

 What's Next?

 With this covered, we've laid out everything we need to do to begin moving into a discussion of functions, attributes, scope, and other foundation aspects of object-oriented programming.

 So for those of who you have felt that this series has been more or less a tour of some of the basics of PHP programming, we're going to begin moving into slightly more advanced territory in the next article.

 Object-Oriented Programming in WordPress: Functions and Attributes - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-functions-and-attributes--cms-20741

 As we continue our discussion of object-oriented programming within the context of WordPress, it's time for us to begin talking about actual features of object-oriented programming.

 Though we've already covered classes, we needed to explore some foundational programming constructs before coming back around to some of the core object-oriented concepts.

 In this article, we're going to begin talking about functions and attributes: two foundational aspects of object-oriented programming. But first, make sure that you're all caught up with the previous articles:

 One of the points that I'd like to reiterate about this series is that we're working on examining object-oriented programming within the context of WordPress by starting from the absolute foundational aspects of programming.

 We're doing this in order to make sure that those who are beginners to programming have everything they need not only to get started with programming, but also to learn the paradigm and to eventually work into building a WordPress plugin.

 With that said, let's resume our discussion by talking about functions and attributes.

 Functions

 For those who are familiar with procedural programming, then you are no doubt familiar with functions - after all, they're how you get work done, right?

 But for those who are just jumping into programming, there are two things to understand about functions:

 	They exist within both procedural programming, functional programming, and object-oriented programming.

 	They can be viewed as a way to tie all of the previous constructs together to complete a more complex unit of work.

 To the second point, it's true that much of what we discussed before - that is, variables, conditionals, loops, and so on - are responsible for completing a single unit work, as well; however, each of those work in conjunction with one another to achieve something slightly greater than themselves.

 Depending on the language, you're also likely to hear these referred to as methods or routines. Regardless of the terminology used, the point is that functions use foundational constructs to complete an action.

 Functions can work in three ways, as well:

 	Functions can perform work by taking in information and operating on it.

 	Functions can perform work by returning information back to the code that invoked the it.

 	Functions can perform a unit of work without taking any information in or returning any information to the code that invoked it. Simply put, it can silently perform an action.

 We'll be taking a look at each of these scenarios in more detail in just a moment, and in a future article we're going to see how they work withinclass. For now, let's take a look at how functions work within PHP and several nuances about each of them.

 Simple Functions

 Recall from the previous section that there are times in which we may define functions that don't accept any input nor do they return any information.

 In this case, these types of functions will usually perform some type of operation (such as updating an option in the database) and they will be invoked by another function after a certain operation has completed.

 So, for example, let's say that we have a function that we want to use to update the underlying WordPress database. This requires that we know several things:

 	
 update_option

 	A key that we'll be using to store the information

 	The value to store and that will be retrieved with the key

 In our case, let's say that we want to update a value in the database identified by the blog_last_updated key. Then, we'll use the PHP function time() to store the time when the function is called.

 With that said, let's define our function:

<?php
function set_blog_updated() {
 update_option('blog_last_updated', time());
}

 Based on the description that we've provided above, you can see that the body of the function uses the update_option WordPress API function with the specified key and value that we described.

 This can then be invoked by another piece of code by simply callingset_blog_updated();.

 Arguments

 Functions that don't accept arguments can only be useful up to a certain level. At some point, you need to be able to pass information into a function so that it can perform some type of calculation, operation, or evaluation on the information.

 In keeping with our example above, let's say that we still want to update the database with a timestamp, but only if a certain key is passed into the function; otherwise, we won't do anything.

<?php
function set_blog_updated($key) {

 if ('blog_last_updated' === strtolower($key)) {
 update_option($key, time());
 }

}

 Notice that the function signature - that is, the name of the function and the data in the parentheses - has been updated to accept a variable referenced by $key.

 Next, the function uses a conditional to check the value of the variable is equal to that of the key that we were looking at in the first version of the function. For the sake of making an easy comparison, it lowercases the value of $key by using PHP's strtolower function.

 This means that we can invoke the function in the following way andstill have it update:

 	
 set_blog_updated('BLOG_LAST_UPDATED');

 	
 set_blog_updated('Blog_Last_Updated');

 	
 set_blog_updated('blog_last_updated');

 All of the above function calls will perform the following operation; however, if we were to pass anything else into the function, the conditional would evaluate to false and would not fire the update function.

 For example, calling set_blog_updated('not_now'); wouldnot work.

 Returns

 Now, let's say that we want the function with which we're working to return a value. Specifically, let's say that we wanted to return a value on whether or not the update function fired successfully.

 To do this, we can take advantage of a function's return statement as well as the value that the update_option function returns. According to the WordPress Codex, update_option will return the following:

 True if option value has changed, false if not or if update failed.

 To that end, we can adjust our function to work like this:

<?php
function set_blog_last_updated($key) {

 $was_updated = false;

 if ('blog_last_updated' === strtolower($key)) {
 $was_updated = update_option($key, time());
 }

 return $was_updated;

}

 Now we have a function that accepts an argument, returns a value, and also leverages a conditional not only to update the value but also to make sure the value was updated successfully.

 Given the function above, we can invoke it like we have in previous examples, but now we can store it's result in a variable that will allow us to further improve the code in our program.

 For example, we can continue to call the function by saying set_blog_last_updated('blog_last_updated'); but now we can also store the result of the function in a variable.

 To do this, all we need to do is write a line of code that performs the following:$blog_was_updated = set_blog_last_updated('blog_last_updated');In this case, the variable $blog_was_updatedwill be set to true if the condition ran and the update call was successful, but will be false if the condition did not run or if it did run but the update_function failed.

 Variable-Length Arguments

 There's one other aspect of functions that are beyond the scope of this particular article and that is variable-length arguments. In short, there's a way that a function can accept a number of arguments that we aren't able to anticipate while writing code.

 If you're interested in reading ahead, then you can check out the article in the PHP manual; however, we'll look to cover this later in the series.

 Attributes

 At this point, we're going to shift gears and talk about something that's purely related to object-oriented programming and that's class attributes.

 Recall from our discussion on classesthat we looked at a sample class for a Blog_Post. For reference, the code looked like this:

class Blog_Post {

 private $author;

 private $publish_date;

 private $is_published;

 public function publish() {
 // Publish the article here
 }

 public function delete() {
 // Delete the article here
 }

}

 At this point in the series, you should be able to easily identify the class definition, the function definition, and the attributes.

 Specifically, the attributes are the three variables that exist at the top of the file above the functions. As stated in the article on classes, attributes can be thought of as the adjectives that describe the class.

 In the example above, we have a class that represents a blog post, and a blog post can be described by its author, its publish date, and whether or not it has been published.

 These particular values are nothing but variables as we've looked at earlier in the series, and they can hold any type of value be it a primitive data type such as a string, integer, boolean or it can reference a more complex data type such as an array or another object.

 The point of attributes is that they exist at theclass level. This means that the variables can be used in any of the functions that are defined in the class - they don't have to be passed as function arguments, and they can be updated to to reflect the state of the object at any point during its runtime.

 Now, in terms ofhow they are set, this is done within the context of a special type of function called a constructor. In short, a constructor is a function that is set aside specifically for initializing a class, and in many cases, it's used to initiate values.

 In PHP, a constructor is a function that is named __constructwhich is a reserved word in the language. So given the attributes above and our primer on functions, here is how we might go about initializing our attributes:

class Blog_Post {

 private $author;

 private $publish_date;

 private $is_published;

 public function __construct() {

 $this->author = '';
 $this->publish_date = null;
 $this->is_published = false;

 }

 public function publish() {
 // Publish the article here
 }

 public function delete() {
 // Delete the article here
 }

}

 One of the most important things to take away from the above code is that attributes are references slightly differently than normal variables. Specifically, notice that they are referenced using the $this keyword. This is what differentiates attributes from normal variables within a class definition.

 Secondly, note that the variables that are being set to initial values. As it stands right now, each blog post that is created will not have an author that is specified, it willnot have a publish date, and it willnot have a state of being published.

 As we get further into discussing object-oriented programming, we're going to talk about how variables are set, how they can be used throughout the class, how they can be set, retrieved, and so on.

 Public, Private, and What?

 For those astute readers, you've likely noticed the keywords being used throughout the code such as public and private. There's also another keyword that is used within object-oriented programming and that's protected.

 We'll talk about each of these in detail in the next article.

 Coming Up Next

 As we just mentioned, there are a number of keywords that are used to refer to attributes and functions all of which have to do with what's known asscope.In the next article, we're going to begin exploring variable and function scope which is a core idea in object-oriented programming.

 So as we've covered all of the foundational elements of programming in PHP, we're now getting ready to move more into object-oriented programming after which we'll be moving into applying the concepts and techniques in WordPress development.

 Object-Oriented Programming in WordPress: Scope - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-scope--cms-20789

 In continuing our discussion of object-oriented programming in WordPress, we need to begin talking about the idea of scope.In short, this refers to the idea as to classes can control how their attributes and functions are accessed (or whether or not they can even be accessed).

 This is yet another core idea of object-oriented programming after which we should be in good shape to begin working on an actual WordPress plugin.

 Before moving forward, please note that each article in this series builds on the one before it, so if you're just joining us, please be sure to check out the previous articles in the series:

 Once you're all caught up, let's continue our discussion on the last piece of the paradigm necessary for us to understand before we get into practical application of object-oriented programming within WordPress.

 Defining Scope

 According the Wikipedia, the first definition of scope is as follows:

 In computer programming, the scope of a name binding – an association of a name to an entity, such as a variable – is the part of a computer program where the binding is valid: where the name can be used to refer to the entity. In other parts of the program the name may refer to a different entity (it may have a different binding), or to nothing at all (it may be unbound).

 Unless you're an experienced programmer, this is a bit confusing, isn't it? In fact, it may even read like a bit of jargon.

 But that's okay because the purpose of this article is to provide a working definition of scope as well as some practical examples as to what it looks like within the context of a program.

 So, before we look at the three different aspects of scope in object-oriented programming, let's formulate a cleaner definition.

 In short, scope refers to how variables and functions can be access from third-party objects or child objects within the program.

 For example, say that you have a BlogPost object and an Author object. Next, let's say that the Author has attributes for first_name and last_name and the BlogPost wants to access them in order to, say, display them on the screen.

 Perhaps a high-level illustration would help:

[image:]

 In this post, the BlogPost is requesting name information from the Author class. Notice that in the diagram above, the class name is in the first blog, the attributes in the second block, and then the empty third blocks are usually reserved for functions.

 But that's beyond the,ahem, scope of this article.

 Remember: Classes typically represent nouns, attributes represent adjectives, and functions represent verbs or action that the object can take. To that end, classes normally encapsulate their information in strategic ways such that how they work is kept hidden andwhat they can do is demonstrated by their publicly available functions.

 In order to do this, variables and functions must be given a certain scope that grants other objects access to their information. These type of objects include third-party objects that want to leverage the data represented by a class, and another type of object represents an object thatinherits information from that class.

 Inheritance is beyond what we're going to cover in this particular article; however, we will be covering this a bit later in the series for those who are brand new to object-oriented programming.

 So, with that said, we're ready to take a look at a practical example of scope including how we've been using it thus far in the series and how it impacts design decisions moving forward.

 All About Public, Private, and Protected

 The primer above should have explained, at least a high-level, what scope is and how it matters, but if not, then perhaps the following sections will.

 Specifically, we're going to be taking a look at each of the types of scope that variables and functions can have, we're going to explain what each one means, and then we're going to explain when you would want to use each of them.

 Before we move forward, note that the public, protected, and private keywords can be used to scope both attributesand functions. This matters because the rules that apply to attributes are also applicable to functions.

 With that said, let's take a look at each of the keywords.

 Public

 Simply put, public attributes and functions are available to every type of object that's attempting to access the variable or the function.

 For example:

<?php

class Author {

 public $first_name;

 public $last_name;

 public function set_first_name($name) {
 $this->first_name = $name;
 }

 public function set_last_name($name) {
 $this->last_name = $name;
 }

 public function get_first_name() {
 return $this->first_name;
 }

 public function get_last_name() {
 return $this->last_name;
 }

 // Other class details...

}

 Given this setup, any object that calls on an instance of this object can not only access the $first_nameand $last_name attributes, but can alsochangethem. Similarly, any object that calls an instance of object, can access the functions to retrieve the name and change the name.

 So it raises the question: What's the point of having these functions if the attribute is made public? I mean, it's redundant, isn't it? Yes. And we'll be answering it later in the article once we talk about the private keyword.

 Protected

 Next, protected attributes and functions are available within the context of the class in which they are defined, butnot for third-party objects. That said, theycan be called from within their own class, but not from external classes.

<?php

class Author {

 protected $first_name;

 protected $last_name;

 protected function set_first_name($name) {
 $this->first_name = $name;
 }

 protected function set_last_name($name) {
 $this->last_name = $name;
 }

 protected function get_first_name() {
 return $this->first_name;
 }

 protected function get_last_name() {
 return $this->last_name;
 }

 // Other class details...

}

 But there is an exception: subclasses.

 For example, let's say that you define a class named Contributor which is a subclass of Author, this means that the Contributor has access toall of the protected (and public) attributes and functions of its parent class.

<?php

class Contributor extends Author {

 /**
 * This class has access to all of the attributes
 * and functions of its parent class, Author.
 */

}

 Given the code above, this means that you can call methods such as get_first_name() from within the Author class or within the Contributor class butnot from any external classes.

 Admittedly, subclasses have more to do with inheritance which is something that we'll be talking about more later in the series; however, I bring this up to provide an important clarification between public attributes and functions and private attributes and functions.

 Private

 in short, private attributes and functions lock the attributes and functions into the class in which they're defined. This means that no external object or subclasses can accessany of the information.

 Clearly, this is the strictest form of scope but that's not to be read as if it's a bad thing (or a good thing). Instead, it's meant to provide a way for certain information to stay hidden (or abstracted) within the context of the class in which it is defined.

 Going back to our first example, let's take a look at how we can refactor the class such that it provides the maximum amount of utility for both external classes and subclasses.

<?php

class Author {

 private $first_name;

 private $last_name;

 private function set_first_name($name) {
 $this->first_name = $name;
 }

 private function set_last_name($name) {
 $this->last_name = $name;
 }

 private function get_first_name() {
 return $this->first_name;
 }

 private function get_last_name() {
 return $this->last_name;
 }

 // Other class details...

}

 First, this example demonstrates poor use of the private keyword.

 In this example, not only are the attributes inaccessible, but the functions aren't accessible either. In other words, to other objects in "the outside world," this class appears to have nothing available.Even worse, not even subclasses can access any of this information.

 In short, the code doesn't really make sense.

 So, let's refactor this a little but more such that the attribute remains hidden (and thus inaccessible to third-party objects), and we'll specify a way for third-party objects to retrieve the names but willonly allow the actual class and its subclasses to change them:

<?php

class Author {

 protected $first_name;

 protected $last_name;

 public function get_first_name() {
 return $this->first_name;
 }

 public function get_last_name() {
 return $this->last_name;
 }

 // Other class details...

}

 Of course, this is just an example. Obviously, we're leaving out some of the implementation details such that we don'tknow what details may call for, say, the names to be updated.

 But it doesn't matter: This shows a complete example of how private, protected, and public scoped aspects of a class can work in conjunction with one another to provide a safe, strategic way to access information.

 Abstraction and Information Hiding

 As far as scope is concerned, you can make the argument that it all comes down to abstraction and information hiding.

 That is to say that classes (which are blueprints for object, if you recall from our earlier articles) should strategically organize their information such that:

 	information that shouldonly be accessible and relevant to it should remain private

 	information that should be accessible by itself and its subclasses should be protected

 	information that should be accessible by third-party objects should be public

 In fact, I'll go a step further and say that you're not likely to actually see many attributes marked as public. Instead, you're more likely to see the attributes marked as protected - for the purposes of subclassing - or private, so that their data can be managed by functions that are scoped appropriately.

 Initially, this sounds relatively simple, right? And the concept itself isn't terribly complicated, but when it comes to building systems that rely a number of different objects all working together to provide solid abstraction, clean interfaces by which third-party classes and subclasses can interact with it, and efficient ways of organizing information, it can become more challenging - there are a lot of moving parts to consider.

 With that said, this is one of those things that writing code, interacting with other developers, and reading code can breed experience.

 For whatever it's worth, I'm not afraid to admit that these are still strategies with which I struggle not because I don't understand the concepts, but because trying to provide the cleanest class implementation as possible can be difficult, especially in a system that's apt to change.

 But that's content for another post.

 Of course, if you have questions or comments about anything regarding the topic of scope, don't hesitate to leave them in the comments.

 What's Next?

 Starting in the next article, we're going to begin incorporating some of this information into a practical application of building a WordPress plugin.

 So for those of you who have been waiting to see how this series works in conjunction with WordPress, the next article should begin to bring all of the concepts together as we continue the series with our own WordPress plugin using the concept of object-oriented programming.

 Object-Oriented Programming in WordPress: Building the Plugin I - Tuts+ Code Article

 http://code.tutsplus.com/articles/object-oriented-programming-in-wordpress-building-the-plugin-i--cms-21083

 At this point in the series, we'refinally able to begin building our plugin using the object-oriented techniques that we've learned thus far in the series.

 If you're just now joining us, I highly recommend catching up on the series thus far; otherwise, you risk missing out on some of the key points that we're going to be demonstrating as we build out the plugin over the next few articles.

 Alright, so with that said, it's finally time to start writing code. Before we begin, it's important to understand that building a plugin - or any type of software for that matter - requires a number of steps, and although we're going to write a bit of code in this particular article, we won't be adding a lot of functionality until we have the scaffolding or the foundation of the plugin.

 In order to do that, we need to review several things:

 	Defining the features of the plugin that we're going to be writing,

 	Share anything that we may not be building into this first version,

 	Discuss the architecture and file organization of the plugin.

 So let's cover those points really quick, and then we'll get into the details of the plugin.

 Post Meta Viewer

 Throughout the next few articles, we're going be building a plugin that introduces a post meta box into the single post editor view that displays all of the meta data that's associated with the current post.

 1. The Features

 The plugin will be read-only in that you can onlyview the meta data associated with the plugin. We won't be able to introduce any new meta data - at least not for the first version.

 The other features are that it will display it in a clean, organized format so that we can easily identify the key and the values for the post ID. We'll also introduce an anchor that will allow us to copy a line of code that will allow us to make a call to the piece of information in the form of get_post_meta($post_id, $meta_key, $meta_value);.

 2. A Strong 1.0

 Before going any further, there are a lot of neat features we could implement into this plugin.

 We could introduce the ability to:

 	add new custom post meta data

 	update existing post meta data

 	delete existing post meta data

 	sort the columns by meta keys

 	sort the columns by meta values

 	...and so on

 But in keeping with the philosophy of creating a "strong 1.0," we're going to be building a lean, focused foundation on which we can continue to build out the plugin as we see fit after this series.

 Perhaps we'll cover some of the above features before the end of the series, perhaps you'll want to introduce your own set of features. Either way is fine. The bottom line is that we're going to build a strong core off of which we can continue to iterate on to expand functionality.

 3. The Architecture and File Organization

 So with all of that said, let's first talk through the high points of the plugin, then we'll take a look at how we'll organize the files and the components of the plugin.

 	The plugin requires a base plugin file that will serve as a sort of boot loader (or bootstrap file) for registering itself for WordPress and for loading up the components of the plugin.

 	The plugin will need a class that coordinates the hooks and the callbacks used throughout the plugin. This will help decouple functionality from the hooks and the classes responsible for actually displaying the work which allows us to make sure that each of our classes are specialized and ideally performing a single job.

 	The plugin will need a class that will be responsible for displaying information in the single post dashboard that will actually render the meta box.

 	We'll need a core plugin class that will register all of the dependencies and provide information about the plugin's version, is aware of the loader and the administration functionality in order to register information between the two components.

 	And finally, we'll need some stylesheets in order to make sure that the information looks good within the dashboard.

 Sound confusing? Hopefully seeing and taking a look at the file structure and the basic sample codewill help this continue to make more sense.

 With that said, let's take a high-level look at the components that will interact with each other, then we'll take a look at how the files will be organized. After that, we'll get into stubbing out the code for the plugin on which we'll be filling out in the next article.

 Plugin Components

 Specifically, the plugin will consist of the follow components - or files - that will make up the source of the plugin. After taking a look at the file listing, we'll take a look at a diagram of how all of the pieces will interact.

 	
 single-post-meta-manager.php is the primary file the registers the plugin with WordPress and sets everything in motion.

 	
 class-single-post-meta-manager-admin.php is the file that is responsible for registering and enqueueing stylesheets as well as displaying the user interface elements that will contain the post meta data.

 	
 single-post-meta-manager-admin.css is the stylesheet that will style the user interface.

 	
 class-single-post-meta-manager-loader.php is the file that will coordinate actions and filters between the core plugin and the administration class.

 	
 class-single-post-meta-manager.php is the core plugin file that maintains plugin version information, plugin slug information, references to the loader, and the file in which we instruct the loader which objects and functions are responsible for displaying the administrative user interface.

 	
 README.md provides the usual instructions for how to get started with the plugin.

 	
 CHANGES.md provides a list of changes that occur throughout each version of the plugin that we release.

 Depending on your level of experience with object-oriented programming, this may or may not seem like a lot of files for a relatively simple set of features; however, there's still more to it: We aren't going to be dropping all of these files into the root of the plugin directory.

 Instead, we're going to take it a step further and organize things in proper directories, as well.Once we review that, we'll then take a look at the organization of the components in the form of a diagram, and then we'll review the code that provides the scaffolding for the plugin.

 File Organization

 The file organization is relatively simple and is probably best demonstrated through the use of an image:

[image:]

 To be clear, here's the break down of what you see in the screenshot above:

 	
 admin/class-single-post-meta-manager-admin.php

 	
 admin/css/single-post-meta-manager.admin.css

 	
 includes/class-single-post-meta-manager-loader.php

 	
 includes/class-single-post-meta-manager.php

 	
 languages/

 	
 single-post-meta-manager.php

 	
 CHANGES.md

 	
 README.md

 	
 LICENSE.txt

 This is important to recognize and there are a couple of places in the code where we are going to be registering dependencies and it's important to knowwhere the dependencies are so that we can provide the proper paths to them.

 Building The Plugin

 At this point, we're ready to begin stubbing out the classes that we're going to use. There are several important things to note about the code you're about to see:

 	We're only going to be stubbing out the classes and the methods - we'll not be introducing any real functionality in this article.

 	By the end of the implementation, the pluginshould appear in the WordPress dashboard and can be activated (although nothing will actually happen).

 	Despite the fact that I think that documentation is key for quality development, we won't be introducing the comments in this article because there's a tradeoff to be made: This article can become excessively long with an extraordinary amount of detail, or we can continue to take each aspect of this series step-by-step. I'm opting to do the latter so that we're not overwhelmed with the amount of information.

 With that said, if you have questions about the code, feel free to leave comments about this; however, I may say wait until the next article to see the answer.

 Now, on to the code.

 The Core Plugin File

 The core plugin file is responsible for registering the plugin with WordPress, and will ultimately be responsible for importing the core plugin class (which we'll review in just a bit), and actually setting the plugin in motion.

<?php
/*
 * Plugin Name: Single Post Meta Manager
 * Plugin URI: http://github.com/tommcfarlin/post-meta-manager
 * Description: Single Post Meta Manager displays the post meta data associated with a given post.
 * Version: 0.1.0
 * Author: Tom McFarlin
 * Author URI: http://tommcfarlin.com
 * Text Domain: single-post-meta-manager-locale
 * License: GPL-2.0+
 * License URI: http://www.gnu.org/licenses/gpl-2.0.txt
 * Domain Path: /languages
 */

if (! defined('WPINC')) {
 die;
}

 Note that the conditional that we have at the bottom of the file. This will make sure that the plugin file can't be accessed within the web browser directly.

 Administrative Files

 All of these files reside in the admin directory as listed above.

 The Single Post Meta Manager Admin Class

 This class will enqueue the stylesheet and render the meta box that will be used to display the given post meta.

<?php

class Single_Post_Meta_Manager_Admin {

 protected $version;

 public function __construct($version) {
 $this->version = $version;
 }

 public function enqueue_styles() {

 }

 public function add_meta_box() {

 }

}

 In this class, notice that it has a single protected attribute for the $version of the plugin. This attribute is setup in the constructor of the class.

 We'll see how this fits together later in the code.

 The Single Post Meta Manager Stylesheet

 Right now, there's no code to display for this particular file; however, go ahead and add it to the admin/css subdirectory as its what we'll eventually be using to style the dashboard.

 Includes

 These are core plugin files that are responsible for coordinating information between the various hooks and the administrative area of the plugin.

 Single Post Meta Manager Loader

 This class will be used by the primary plugin class to coordinate all hooks that exist in the plugin and the administrative class that we defined above.

<?php

class Single_Post_Meta_Manager_Loader {

 protected $actions;

 protected $filters;

 public function __construct() {

 }

 public function add_action($hook, $component, $callback) {

 }

 public function add_filter($hook, $component, $callback) {

 }

 private function add($hooks, $hook, $component, $callback) {

 }

 public function run() {

 }

}

 Notice that in the class above, we've marked the attributes as protected. This is done so that this class has access to its attributes, but no other classes do.

 Additionally, we've gone ahead and done this just in case we subclass this particular class in a future iteration of the plugin.

 Single Post Meta Manager

 Finally, we have the primary plugin class is is responsible for loading the dependencies, setting the locale, and coordinating the hooks.

<?php

class Single_Post_Meta_Manager {

 protected $loader;

 protected $plugin_slug;

 protected $version;

 public function __construct() {

 $this->plugin_slug = 'single-post-meta-manager-slug';
 $this->version = '0.1.0';

 }

 private function load_dependencies() {

 }

 private function define_admin_hooks() {

 }

 public function run() {

 }

 public function get_version() {
 return $this->version;
 }

}

 Notice in the code above, we have additional protected attributes, a couple of private functions, and a public function used as a getter which we'll be using as we continue to build out the plugin.

 In the next article, we'll be spending a lot of time in this class as this is the entry point for where a lot of the functionality happens.

 Coming Up Next

 We've covered a lot of material in this article, but there's obviously much more to do. Aside from providing documentation for our functions, we need to actually implement functionality that brings this scaffolding to life.

 In the next article in the series, we're going to do just that, after which we'll turn our attention to documenting the code.

 As previously mentioned, please feel free to leaves any questions and/or comments about the code above. For those who are interested, you can always browse the current state of the project on GitHub.

 Until the next article!

 Object-Oriented Programming in WordPress: Building the Plugin II - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-building-the-plugin-ii--cms-21105

 In the previous article in this series, we finally began preparing the foundation for the plugin that we're going to be writing.

 Specifically, we took a look at the file organization, the components, and the actual details of what the plugin is going to do. We also stubbed out the code that we'll be filling out in this tutorial.

 In addition to making our plugin actually do something, we're going to be talking about a number of different object-oriented principles, techniques, and ideas as we work through the plugin.

 Note that in this tutorial we're going to be doing very little documentation. We've covered the details about this in the previous article; however, we'll be talkingmore about it in the article following this one.

 As with the rest of the articles in this series, please be sure to catch up on everything that we've covered thus far in the series as everything that we're doing builds on the previous topics.

 For reference, we've covered:

 With that said, let's pick up where we left off.

 Where Do We Start?

 When it comes to writing software - regardless of the paradigm that's being used - it's not done so in a linear fashion. That is, we don't necessarily being writing at the starting point of the program. Often times - though not always - that might be one of the latter parts that we right.

 With that said, we're going to begin working on each file that makes up the plugin in a way that makes sense as we work through the plugin. By that, I mean that as we work through this article, things may seem scattered at first but should hopefully become a bit clearer as we look at each file.

 The Loader

 The first class that we're going to complete is located in includes/class-single-post-meta-manager-loader.php. If you recall from the previous article, this class is responsible forcoordinating actions and filters between the core plugin and the administration class.

 In a sense, it provides a wrapper around WordPress' native hook APIs; however, it allows us to de-couple (and thus enforce a separation of concerns) our classes so that each can specialize on a specific purpose.

 First, let's take a look at the class:

<?php

class Single_Post_Meta_Manager_Loader {

 protected $actions;

 protected $filters;

 public function __construct() {

 $this->actions = array();
 $this->filters = array();

 }

 public function add_action($hook, $component, $callback) {
 $this->actions = $this->add($this->actions, $hook, $component, $callback);
 }

 public function add_filter($hook, $component, $callback) {
 $this->filters = $this->add($this->filters, $hook, $component, $callback);
 }

 private function add($hooks, $hook, $component, $callback) {

 $hooks[] = array(
 'hook' => $hook,
 'component' => $component,
 'callback' => $callback
);

 return $hooks;

 }

 public function run() {

 foreach ($this->filters as $hook) {
 add_filter($hook['hook'], array($hook['component'], $hook['callback']));
 }

 foreach ($this->actions as $hook) {
 add_action($hook['hook'], array($hook['component'], $hook['callback']));
 }

 }

}

 At this point in the series, you should notice several key things about the class based on the discussions that we've had thus far in the series.

 	There are two protected attributions each of which refer to arrays as defined in the constructor. One is designated for actions, the other for filters.

 	There are two public functions. One is designed to easily add actions, the other is designed to easily add filters. Note that each accepts three components: the hook name, the main object that has the function to be called, and the function to be called during the actual execution of the hook. For more information about actions and filters, see this reference.

 	Next, we have a private function that is used to simplify the previous two public functions such that we have a single place to add the hook to the proper array.

 	Finally, we have a run function is that used to wire up all of the defined hooks. This is what will register all of our custom functions with WordPress.

 As we continue to build the rest of the plugin, we'll see this particular class in use.

 The Administration Dashboard

 This part of the plugin contains all of the files that are located in the admin directory. If you remember from the previous article, we have a primary class, a stylesheet, and single file used to render the view of the content.

 We'll look at each of these files in order that they are used starting with the core admin class.

 Single Post Meta Manager Admin

 This is the core class responsible for registering the stylesheets, the meta box, and including the file that will render the content of the meta box.

 Let's take a look at the full code and then we'll review what it's doing.

<?php

class Single_Post_Meta_Manager_Admin {

 private $version;

 public function __construct($version) {
 $this->version = $version;
 }

 public function enqueue_styles() {

 wp_enqueue_style(
 'single-post-meta-manager-admin',
 plugin_dir_url(__FILE__) . 'css/single-post-meta-manager-admin.css',
 array(),
 $this->version,
 FALSE
);

 }

 public function add_meta_box() {

 add_meta_box(
 'single-post-meta-manager-admin',
 'Single Post Meta Manager',
 array($this, 'render_meta_box'),
 'post',
 'normal',
 'core'
);

 }

 public function render_meta_box() {
 require_once plugin_dir_path(__FILE__) . 'partials/single-post-meta-manager.php';
 }

}

 This is a relatively simple class that assumes that you're familiar with wp_enqueue_style and add_meta_box. If not, review the linked articles, and then return to this post.

 Next, let's take a look at what the rest of the class is doing:

 	Note that there's a private attribute that is used to track the version of the plugin. This value is passed into the class's constructor and is primarily used in order to make sure that we're including the most recent version of the plugin when enqueueing our stylesheets in order to make sure we're busting any files that may be cached when running this plugin.

 	Next, we have a public function that's used to register the stylesheet associated with the dashboard, and we have a public function that's used to add a meta box to the post type dashboard.

 	Finally, we have another public function (that's technically called fromwithin this class) to render the content of the meta box. The contents of this file are located in an external file that we'll take a look at momentarily.

 Though we'll see everything play out in more detail later, you may start to notice that the function that enqueues the stylesheets isn't referenced anywhere else. This is where the Loader class will eventually come into play.

 Single Post Meta Manager Partial

 Some developers like to write the markup for meta box views within PHP and store them into really long strings.

 I'm not a fan of that approach because views (or partials or templates, or whatever you'd like to call them) and typically used to display data and thus consist of more markup than anything else. To that end, I think that they should be their own file.

 In this case, we want to have a file that renders all of the meta data associated with the current post in a tableelement that's contained within the meta box.

 The markup for this file looks like this:

<div id="single-post-meta-manager">

 <?php $post_meta = get_post_meta(get_the_ID()); ?>
 <table id="single-post-meta-manager-data">
 <?php foreach ($post_meta as $post_meta_key => $post_meta_value) { ?>
 <tr>
 <td class="key"><?php echo $post_meta_key; ?></td>
 <td class="value"><?php print_r($post_meta_value[0]); ?></td>
 </tr>
 <?php } ?>
 </table>

</div><!-- #single-post-meta-manager -->

 Though the markup and the minimum PHP that's contained in this file should be relatively self-explanatory, itdoes depend on your knowledge of the get_post_metaand get_the_ID functions.

 Once all of the post's meta data is retrieved, we then loop through the information (using one of the loop constructs that we covered much earlier) and then display both the meta key and the value.

 The Simple Post Meta Admin Styles

 The last thing that we need to do for the content in the meta box is to provide the styles in the stylesheet that we've enqueued in the core admin class.

 To do that, we'll edit css/simple-post-meta-manager.css.

#single-post-meta-manager-data {
 width: 100%;
}

#single-post-meta-manager-data .key {
 font-weight: bold;
}

 Obviously, this is very simple. It doesn't provide anything fancy other than setting the width of the table to 100% of its container, and it bolds the meta key values.

 But that's enough for what we're looking to do now.

 The Core Plugin File

 At this point, we need to define the core plugin file. This is the file that defines the plugin's version, the plugin's slug (which is normally used in internationalization as well as other features), instantiates the Loader, and that registers all of the necessary hooks with WordPress.

 Let's take a look at the code, then review it once we've got everything defined:

<?php

class Single_Post_Meta_Manager {

 protected $loader;

 protected $plugin_slug;

 protected $version;

 public function __construct() {

 $this->plugin_slug = 'single-post-meta-manager-slug';
 $this->version = '0.2.0';

 $this->load_dependencies();
 $this->define_admin_hooks();

 }

 private function load_dependencies() {

 require_once plugin_dir_path(dirname(__FILE__)) . 'admin/class-single-post-meta-manager-admin.php';

 require_once plugin_dir_path(__FILE__) . 'class-single-post-meta-manager-loader.php';
 $this->loader = new Single_Post_Meta_Manager_Loader();

 }

 private function define_admin_hooks() {

 $admin = new Single_Post_Meta_Manager_Admin($this->get_version());
 $this->loader->add_action('admin_enqueue_scripts', $admin, 'enqueue_styles');
 $this->loader->add_action('add_meta_boxes', $admin, 'add_meta_box');

 }

 public function run() {
 $this->loader->run();
 }

 public function get_version() {
 return $this->version;
 }

}

 The class contains the following attributes:

 	The version which is passed around throughout the plugin in order to help not only to define the current working version, but also to provide functionality such as cache-busting functionality for our stylesheets.

 	There's a plugin slug which can be used for internationalization purposes, as well as other times when a unique identifier is needed.

 	A reference to the loader which we've defined earlier in this file.

 The above attributes are all set in the constructor, but there are also calls to several other functions.

 	
 load_dependencies is used in order to import all of the files that are used throughout this plugin such as the Admin Manager and the Loader.

 	
 define_admin_hooks is how we take advantage of the Loader in order to coordinate the functions defined in our Admin class that enqueue our styles and our meta box with WordPress. This is how we're separating the concerns of our plugin and making sure that each class as a single purpose.

 	
 run is the function that sets everything into motion so that all of the plugin's functionality is running when activated within WordPress.

 Except we're still missing a final piece: how do we actually instantiate the core plugin class and kick off the process?

 The Plugin Boot Loader

 To do this, we take advantage of a file located in the root of the plugin directory. Some people call this a plugin bootstrap file, some call it a boot loader, and some call it the main plugin file.

 Whatever you opt to call it, this is the file that registers itself with WordPress and that sets everything into motion. Let's take a look at the code and then we'll review what it does afterward:

<?php
/*
 * Plugin Name: Single Post Meta Manager
 * Plugin URI: http://github.com/tommcfarlin/post-meta-manager
 * Description: Single Post Meta Manager displays the post meta data associated with a given post.
 * Version: 0.2.0
 * Author: Tom McFarlin
 * Author URI: http://tommcfarlin.com
 * Text Domain: single-post-meta-manager-locale
 * License: GPL-2.0+
 * License URI: http://www.gnu.org/licenses/gpl-2.0.txt
 * Domain Path: /languages
 */

if (! defined('WPINC')) {
 die;
}

require_once plugin_dir_path(__FILE__) . 'includes/class-single-post-meta-manager.php';

function run_single_post_meta_manager() {

 $spmm = new Single_Post_Meta_Manager();
 $spmm->run();

}

run_single_post_meta_manager();

 The code comment at the top of the file is responsible for telling WordPress that the plugin exists and giving it enough information about the plugin so that it can display it within the dashboard.

 The first conditional that you see prevents the plugin file from being accessed directly. This is nothing more than a simply security measure.

 Finally, we make a call to require_onceto include the core plugin file that we looked at above, and then we define a function and instantiates the Single_Post_Meta_Manager and after which we call run which is what sets everything in motion.

 Finally, we make a call to the function that we definedat the very end of the file. This kicks off the process and brings the plugin to life.

 What's Up Next?

 At this point, we've completed the functionality of our plugin; however, we're still not done.There is still one more thing we need to do in order to make sure that we're following all of the best practices that go into a plugin and that's providing documentation.

 In the next post, we'll take a break from the longer form articles of writing code, review the WordPress Documentation Standards, and then we'll document the plugin so that we fully round out all of it's functionality.

 In the meantime, download the example plugin, explore how everything fits together, and be sure to leave any comments or questions that you have about our work so far.

 Object-Oriented Programming in WordPress: Document the Plugin I - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-document-the-plugin-i--cms-21168

 At this point in the series, we've covered a lot of material - not only have we covered the basics of object-oriented programming, but we've also begun to build a fully functional plugin.

 But the challenge that comes with the work that we've done this far is that it doesn't include any documentation about how the plugin actually works. If you recall from the previous article, we made a conscious development decision to postpone this feature.

 Starting in this article, we're going to be taking a two-part look at how to document WordPress plugins, and how we can do so given our current plugin.

 Before proceeding with the remainder of this article, I highly urge you to catch up with the content that we've covered thus far. As mentioned in every past article, each article builds upon the previous article in the series.

 With that said, it's time to turn our attention to documenting our plugin, but before we go ahead and do that, we need to make sure that we fully understand the standards that are in place for us to document our work.

 So before providing the comments that are relevant to our plugin, we're going to take a look at what all we need to include. After that, we'll look at doing exactly that for our plugin in the next article.

 The WordPress PHP Documentation Standards

 For starters, the WordPress Codex includes a handbook specifically for the PHP Documentation Standards. You can read the standards in their entirety; however, we're going to be highlighting the most important features of what we're going to be implementing in the next article.

 The primary things that we're concerned with documenting are the following:

 	File Headers

 	Inline require statements

 	Class and Function definitions

 	Variable or class properties

 This will obviously be a much slower paced set of articles than the previous two, but given the amount of work that we've covered thus far, it should be a welcome change of pace for some readers.

 So with that said, let's get started.

 File Headers

 File headers are unique in the fact that they are something thatshould be placed in each file of the files that make up a plugin (or a theme, but that's not the focus of this series), but they aren't always.

 According to the Codex:

 The PHPDoc file header block is used to give an overview of what is contained in the file.

 The general template that we'll be using starting in the next article looks like this:

/**
 * Short Description (no period for file headers)
 *
 * Long Description.
 *
 * @link URL
 * @since x.x.x (if available)
 *
 * @package WordPress
 * @subpackage Component
 */

 Note that in the file headers, we donot include a period and there are two components of the description:

 	A short description

 	A long description

 Whenever I write these out for my specific projects, I try to imagine that my short description if something that may fit in the top of of README file, that may a be a single, short elevator pitch for the file, or thatmay even be contained in something as short as a tweet.

 The longer description, of course, can be as easily more detailed as we like. In this case, there is a specific format that we should use for long description, but that's beyond the scope of this particular article as we'll see a particular, practical example of this in the next article in the series.

 Inline require Statements

 Occasionally, we have the need to document code that's included in a function or a class. These are different than function definitions or class variable definitions.

 Instead, think of these as inline comments for when you need to include or require a certain dependency. This will generally be a separate PHP script over anything else.

 For example:

/**
 * Short description. (use period)
 */
require_once(ABSPATH . '/filename.php');

 However, note that according to the Codex that this isnot just limited to function calls such as require_once.

 Files required or included should be documented with a short description PHPDoc block. Optionally, this may apply to inlineget_template_part()calls as needed for clarity.

 Since our plugin is making calls directly to external scripts, wewillbe using a practical example of this in the next article. The reason that I share it here is not only to prepare us for what's coming, but also to show the proper format for how to leverage this in any current that we may be doing.

 Class and Function Definitions

 Though I think that all documentation is important, and I'm not claiming that these two aspects are the most important part of documenting a plugin; however, given the fact that our plugin is object-oriented in nature, it's key that we understand how to properly document both our classes and our functions.

 Class Definitions

 Class definitions are code comments that appear between the file headers (that we discussed above), and the name of the class.

 The format that's used to document a class is as follows:

/**
 * Short description. (use period)
 *
 * Long description.
 *
 * @since x.x.x
 *
 * @see Function/method/class relied on
 * @link URL
 */

 If you happen to look at the WordPress Codex for this article, you'll notice that it provides alittle more information that I've included in the documentation above. This is because they've included content both class and function definitions.

 Instead, we're breaking each of them out into separate areas for future reference, and so that we can see why we'll be documenting certain things in certain ways in the next article in the series.

 Function Definitions

 Similar to class definitions, that you can expect to see the following:

/**
 * Short description. (use period)
 *
 * Long description.
 *
 * @since x.x.x
 * @access (for functions: only use if private)
 *
 * @see Function/method/class relied on
 * @link URL
 * @global type $varname Short description.
 *
 * @param type $var Description.
 * @param type $var Optional. Description.
 * @return type Description.
 */

 Notice in the code comment above, there's very little difference to what we saw with class documentation.

 In addition to what's above, we see information for:

 	global variables

 	parameters

 	return types

 Obviously, this is material isn't typically used within the context of a class; however, itis used within the context of a function.

 To that end, here's how you can think of each of the above:

 	
 global variables refer to those variables that are used within the context of the function that are global to the WordPress environment. This includes things such as $post, $authordata, and others listed here.

 	The @param tag refers to the variables that a function accepts. Obviously, this includes the type of variable that it accepts and a description as to what the variable represents.

 	The @return tag discusses the type of variable that a function returns and a short description as to the type of data that's being returned.

 Rather than give a concrete example of this here, we'll be doing this in the follow-up post with the code we wrote in the previous post.

 Variable or Class Properties

 Finally, variable properties - or more commonly known as class properties (which are sometimes called attributes), represent the data that is held within the class.

 Remember from earlier in our series, we mentioned that attributes are like the adjectives that describe the noun that the class represents.

 As you can see from the previous article, class properties are defined just after the name of the class and before the constructor (regardless of if its public or private).

 To document these attributes, we follow the following template:

/**
 * Short description. (use period)
 *
 * @since x.x.x
 * @access (private, protected, or public)
 * @var type $var Description.
 */

 Easy enough to understand.

 Some may argue that the use of @access is frivolous since the access modifier of the function directly following the comment explains the type of function it is.

 But this is where the differences in the WordPress documentation standards differ from some of the PHP standards (both in place and those that are in process of being standardized).

 A Word About PSR Standards

 In short, PSR refers to the PHP standard recommendations as proposed by the PHP Framework Interop Group.

 You can read about each of these standards here:

 	
 PSR-0: The Autoloading Standard

 	
 PSR-1: The Basic Coding Standard

 	
 PSR-2: The Coding Style Guide

 	
 PSR-3: The Logging Interface

 	
 PSR-4: Autoloader

 Which PSR-5 being discussed right now. These are important to follow for all PHP developers regardless of the platform or foundation they are using, but I also think it's worth noting that the differences (and similarities) existing between PSR and the WordPress standards as thereare differences.

 Which Do We Choose?

 This is a point of disagreement, so what I'm about to say is purely subjective; however, I'm of the mindset that when you're working within WordPress, you should follow the conventions as proposed by WordPress.

 This is not to say that we shouldn't make an effort to more closely align ourselves with what the larger PHP community is doing; however, if we're writing WordPress code for other WordPress developers, then this is something on which we should primarily be focused.

 Coming Up Next

 In the next article, we're going to take a look at applying the above principles within the context of our plugin.

 This should help us to not only build a plugin that conforms highly to the WordPress coding standards, but also to the documentation standards such that we, our users, and our future contributors will be able to easily follow the flow of control through out the project.

 In the meantime, feel free to leave any questions and/or comments in the feed below!

 Object-Oriented Programming in WordPress - Document The Plugin II - Tuts+ Code Tutorial

 http://code.tutsplus.com/tutorials/object-oriented-programming-in-wordpress-document-the-plugin-ii--cms-21167

 At this point in the series, we're ready to move forward with rounding out our plugin by documenting our files, classes, functions, variables, and more.

 Though this is the last step that we actually have to completing the plugin, it's not the last post in the series as we'll continue to look at a few advanced topics in object-oriented programming.

 But before we do that, let's bring our plugin up to version 1.0 by putting into practice everything we learned in the previous article.

 Of course, as withall previous articles, I recommend catching up on everything that we've covered thus far so you're completely up to speed not only with the work that we've done in the last article, but with how we actually got to the final points we're discussing in this article.

 With all of those covered and reviewed, let's get started with documenting each of our files.

 Documenting the Plugin

 There are a number of different ways that we can go about documenting this plugin:

 	We could document all of the file headers first, then we could come back and document the classes, then we could come back and document the variables, then we could document the functions.

 	We could document each file at a time and have a short discussion over everything that's included on a per file basis.

 Obviously, the option will yield more documentation per section, but should result in a much less tedious article and a much easier understanding the flow of control for the entire plugin.

 To that end, we're going to work through the plugin, file-by-file, introducing documentation for each piece of code that we have and then we'll discuss any points of interest following the code.

 Finally, we'll make sure we refer to the final version of the plugin at the end of the article. With that said, let's get started.

 The Single Post Meta Manager

 Recall that the main file for starting the plugin is the single-post-meta-manager.php file located in the root of the directory of the plugin.

 Here's what the fully documented version of the file looks like. Read each comment closely paying attention not only to the format that it follows, but the content that it provides.

<?php
/**
 * The file responsible for starting the Single Post Meta Manager plugin
 *
 * The Single Post Meta Manager is a plugin that displays the post meta data
 * associated with a given post. This particular file is responsible for
 * including the necessary dependencies and starting the plugin.
 *
 * @package SPPM
 *
 * @wordpress-plugin
 * Plugin Name: Single Post Meta Manager
 * Plugin URI: http://github.com/tommcfarlin/post-meta-manager
 * Description: Single Post Meta Manager displays the post meta data associated with a given post.
 * Version: 1.0.0
 * Author: Tom McFarlin
 * Author URI: http://tommcfarlin.com
 * Text Domain: single-post-meta-manager-locale
 * License: GPL-2.0+
 * License URI: http://www.gnu.org/licenses/gpl-2.0.txt
 * Domain Path: /languages
 */

// If this file is called directly, then about execution.
if (! defined('WPINC')) {
 die;
}

/**
 * Include the core class responsible for loading all necessary components of the plugin.
 */
require_once plugin_dir_path(__FILE__) . 'includes/class-single-post-meta-manager.php';

/**
 * Instantiates the Single Post Meta Manager class and then
 * calls its run method officially starting up the plugin.
 */
function run_single_post_meta_manager() {

 $spmm = new Single_Post_Meta_Manager();
 $spmm->run();

}

// Call the above function to begin execution of the plugin.
run_single_post_meta_manager();

 In the above code, notice that we've defined a file header as per the conventions that we outlined that in the previous article. We also maintained the required plugin header tags in order for WordPress to proper read them.

 Note that, in this case, we've included them under a custom @wordpress-plugin tag. This isn't required but helps to separate the file header comments from the required the plugin comments.

 Finally, note that we've bumped the version of this plugin up to 1.0, and we've also given this plugin the @package value of SPMM which is short of Single Post Meta Manager. We'll be using this throughout the plugin.

 The includes Directory

 Next, let's turn our attention to all of the files that are located in the includes directory.

 Since these files are required before anything in the admin directory, it makes sense to look at each of these files individually, and then round out our discussion with the remaining files in the admin directory.

 The Single Post Meta Manager

<?php

/**
 * The Single Post Meta Manager is the core plugin responsible for including and
 * instantiating all of the code that composes the plugin
 *
 * @package SPMM
 */

/**
 * The Single Post Meta Manager is the core plugin responsible for including and
 * instantiating all of the code that composes the plugin.
 *
 * The Single Post Meta Manager includes an instance to the Single Post Manager
 * Loader which is responsible for coordinating the hooks that exist within the
 * plugin.
 *
 * It also maintains a reference to the plugin slug which can be used in
 * internationalization, and a reference to the current version of the plugin
 * so that we can easily update the version in a single place to provide
 * cache busting functionality when including scripts and styles.
 *
 * @since 1.0.0
 */
class Single_Post_Meta_Manager {

 /**
 * A reference to the loader class that coordinates the hooks and callbacks
 * throughout the plugin.
 *
 * @access protected
 * @var Single_Post_Meta_Manager_Loader $loader Manages hooks between the WordPress hooks and the callback functions.
 */
 protected $loader;

 /**
 * Represents the slug of hte plugin that can be used throughout the plugin
 * for internationalization and other purposes.
 *
 * @access protected
 * @var string $plugin_slug The single, hyphenated string used to identify this plugin.
 */
 protected $plugin_slug;

 /**
 * Maintains the current version of the plugin so that we can use it throughout
 * the plugin.
 *
 * @access protected
 * @var string $version The current version of the plugin.
 */
 protected $version;

 /**
 * Instantiates the plugin by setting up the core properties and loading
 * all necessary dependencies and defining the hooks.
 *
 * The constructor will define both the plugin slug and the verison
 * attributes, but will also use internal functions to import all the
 * plugin dependencies, and will leverage the Single_Post_Meta_Loader for
 * registering the hooks and the callback functions used throughout the
 * plugin.
 */
 public function __construct() {

 $this->plugin_slug = 'single-post-meta-manager-slug';
 $this->version = '1.0.0';

 $this->load_dependencies();
 $this->define_admin_hooks();

 }

 /**
 * Imports the Single Post Meta administration classes, and the Single Post Meta Loader.
 *
 * The Single Post Meta Manager administration class defines all unique functionality for
 * introducing custom functionality into the WordPress dashboard.
 *
 * The Single Post Meta Manager Loader is the class that will coordinate the hooks and callbacks
 * from WordPress and the plugin. This function instantiates and sets the reference to the
 * $loader class property.
 *
 * @access private
 */
 private function load_dependencies() {

 require_once plugin_dir_path(dirname(__FILE__)) . 'admin/class-single-post-meta-manager-admin.php';

 require_once plugin_dir_path(__FILE__) . 'class-single-post-meta-manager-loader.php';
 $this->loader = new Single_Post_Meta_Manager_Loader();

 }

 /**
 * Defines the hooks and callback functions that are used for setting up the plugin stylesheets
 * and the plugin's meta box.
 *
 * This function relies on the Single Post Meta Manager Admin class and the Single Post Meta Manager
 * Loader class property.
 *
 * @access private
 */
 private function define_admin_hooks() {

 $admin = new Single_Post_Meta_Manager_Admin($this->get_version());
 $this->loader->add_action('admin_enqueue_scripts', $admin, 'enqueue_styles');
 $this->loader->add_action('add_meta_boxes', $admin, 'add_meta_box');

 }

 /**
 * Sets this class into motion.
 *
 * Executes the plugin by calling the run method of the loader class which will
 * register all of the hooks and callback functions used throughout the plugin
 * with WordPress.
 */
 public function run() {
 $this->loader->run();
 }

 /**
 * Returns the current version of the plugin to the caller.
 *
 * @return string $this->version The current version of the plugin.
 */
 public function get_version() {
 return $this->version;
 }

}

 Clearly, there area lot of new comments that have been introduced into this particular file; however, it should be very self-explanatory as to what each class property, the constructor, and the internal functions are doing.

 The key thing to notice - aside from how the information is coordinated through out the plugin - is how we've adhered to the standards defined in the previous article.

 Notice, however, that wehave taken the liberty ifnot using certain tags and/or features of the documentation when they aren't relevant. This is something that we'll continue doing throughout the rest of the article.

 The Single Post Meta Manager Loader

<?php

/**
 * The Single Post Meta Manager Loader is a class that is responsible for
 * coordinating all actions and filters used throughout the plugin
 *
 * @package SPMM
 */

/**
 * The Single Post Meta Manager Loader is a class that is responsible for
 * coordinating all actions and filters used throughout the plugin.
 *
 * This class maintains two internal collections - one for actions, one for
 * hooks - each of which are coordinated through external classes that
 * register the various hooks through this class.
 *
 * @since 1.0.0
 */
class Single_Post_Meta_Manager_Loader {

 /**
 * A reference to the collection of actions used throughout the plugin.
 *
 * @access protected
 * @var array $actions The array of actions that are defined throughout the plugin.
 */
 protected $actions;

 /**
 * A reference to the collection of filters used throughout the plugin.
 *
 * @access protected
 * @var array $actions The array of filters that are defined throughout the plugin.
 */
 protected $filters;

 /**
 * Instantiates the plugin by setting up the data structures that will
 * be used to maintain the actions and the filters.
 */
 public function __construct() {

 $this->actions = array();
 $this->filters = array();

 }

 /**
 * Registers the actions with WordPress and the respective objects and
 * their methods.
 *
 * @param string $hook The name of the WordPress hook to which we're registering a callback.
 * @param object $component The object that contains the method to be called when the hook is fired.
 * @param string $callback The function that resides on the specified component.
 */
 public function add_action($hook, $component, $callback) {
 $this->actions = $this->add($this->actions, $hook, $component, $callback);
 }

 /**
 * Registers the filters with WordPress and the respective objects and
 * their methods.
 *
 * @param string $hook The name of the WordPress hook to which we're registering a callback.
 * @param object $component The object that contains the method to be called when the hook is fired.
 * @param string $callback The function that resides on the specified component.
 */
 public function add_filter($hook, $component, $callback) {
 $this->filters = $this->add($this->filters, $hook, $component, $callback);
 }

 /**
 * Registers the filters with WordPress and the respective objects and
 * their methods.
 *
 * @access private
 *
 * @param array $hooks The collection of existing hooks to add to the collection of hooks.
 * @param string $hook The name of the WordPress hook to which we're registering a callback.
 * @param object $component The object that contains the method to be called when the hook is fired.
 * @param string $callback The function that resides on the specified component.
 *
 * @return array The collection of hooks that are registered with WordPress via this class.
 */
 private function add($hooks, $hook, $component, $callback) {

 $hooks[] = array(
 'hook' => $hook,
 'component' => $component,
 'callback' => $callback
);

 return $hooks;

 }

 /**
 * Registers all of the defined filters and actions with WordPress.
 */
 public function run() {

 foreach ($this->filters as $hook) {
 add_filter($hook['hook'], array($hook['component'], $hook['callback']));
 }

 foreach ($this->actions as $hook) {
 add_action($hook['hook'], array($hook['component'], $hook['callback']));
 }

 }

}

 Notice that this class is more of less a core component of the plugin in that it coordinates all of the actions and the filters used throughout the plugin. This plugin centralizes all of the registration and coordination of the hooks that are used throughout the plugin.

 Finally, when run is called, all of the hooks are registered with WordPress so as the plugin fires, it will call each of the registered actions and filters.

 The admin Directory

 At this point, we're ready to turn our attention to the files located in the admin directory of the plugin.

 Though the file consists of a couple of PHP files, it also consists of a CSS file. For the purpose of this article, we are not going to be documenting the the CSS files; however, the WordPress Codexdoes define documentation for this.

 For now, though, let's continue documenting the classes and files that exist in the admin directory.

 Single Post Meta Manager Admin

 The Single Post Meta Manager Admin class has a single responsibility: define the functionality to render the meta box and its styles for the dashboard.

<?php

/**
 * The Single Post Meta Manager Admin defines all functionality for the dashboard
 * of the plugin
 *
 * @package SPMM
 */

/**
 * The Single Post Meta Manager Admin defines all functionality for the dashboard
 * of the plugin.
 *
 * This class defines the meta box used to display the post meta data and registers
 * the style sheet responsible for styling the content of the meta box.
 *
 * @since 1.0.0
 */
class Single_Post_Meta_Manager_Admin {

 /**
 * A reference to the version of the plugin that is passed to this class from the caller.
 *
 * @access private
 * @var string $version The current version of the plugin.
 */
 private $version;

 /**
 * Initializes this class and stores the current version of this plugin.
 *
 * @param string $version The current version of this plugin.
 */
 public function __construct($version) {
 $this->version = $version;
 }

 /**
 * Enqueues the style sheet responsible for styling the contents of this
 * meta box.
 */
 public function enqueue_styles() {

 wp_enqueue_style(
 'single-post-meta-manager-admin',
 plugin_dir_url(__FILE__) . 'css/single-post-meta-manager-admin.css',
 array(),
 $this->version,
 FALSE
);

 }

 /**
 * Registers the meta box that will be used to display all of the post meta data
 * associated with the current post.
 */
 public function add_meta_box() {

 add_meta_box(
 'single-post-meta-manager-admin',
 'Single Post Meta Manager',
 array($this, 'render_meta_box'),
 'post',
 'normal',
 'core'
);

 }

 /**
 * Requires the file that is used to display the user interface of the post meta box.
 */
 public function render_meta_box() {
 require_once plugin_dir_path(__FILE__) . 'partials/single-post-meta-manager.php';
 }

}

 Notice that the class above has very few functional details. Primarily, the class maintains a reference to the version of the plugin, the style sheet used to style the meta box, and the function required to actually render the meta box.

 Recall that all of this is setup within the core plugin file and the loader. This helps de-couple the logic that exists within the plugin so each class can focus on what its primary purpose.

 Of course, the final piece of the plugin relies on the actual partial file that contains the markup necessary to display the meta box.

 Single Post Meta Manager Partial

<?php
/**
 * Displays the user interface for the Single Post Meta Manager meta box.
 *
 * This is a partial template that is included by the Single Post Meta Manager
 * Admin class that is used to display all of the information that is related
 * to the post meta data for the given post.
 *
 * @package SPMM
 */
?>
<div id="single-post-meta-manager">

 <?php $post_meta = get_post_meta(get_the_ID()); ?>
 <table id="single-post-meta-manager-data">
 <?php foreach ($post_meta as $post_meta_key => $post_meta_value) { ?>
 <tr>
 <td class="key"><?php echo $post_meta_key; ?></td>
 <td class="value"><?php print_r($post_meta_value[0]); ?></td>
 </tr>
 <?php } ?>
 </table>

</div><!-- #single-post-meta-manager -->

 This should be relatively self-explanatory; however, to be complete, note that this file takes the current post ID (through the use of the get_the_ID() function), reads the post meta data, and then iterates through it building a table that displays the keys and the values.

 Finalizing The Plugin

 At this point, we've completed the implementation of our plugin. From putting the object-oriented programming programming practices into place, to documenting the code.

 You can grab the final version of the plugin on GitHub; however, we will be continuing our object-oriented discussion over a few more posts so that we can explore a few more advanced topics such as inheritance, abstraction, and other topics.

 In the meantime, if you have questions or comments about the plugin, don't hesitate to leave them in the comments!

 Object-Oriented Programming in WordPress - Inheritance I - Tuts+ Code Article

 http://code.tutsplus.com/articles/object-oriented-programming-in-wordpress-inheritance-i--cms-21379

 One of the hardest parts of writing a series for beginners on object-oriented programming isknowing where to stop.

 There are so many topics to cover that we can slowly begin moving into the direction of advanced programming techniques ultimately forgoing exactly what our intended mission was: to arm beginners with a set of tools, strategies, and understanding of beginning concepts.

 First, note that in in the last post in the series, we completed our first, full plugin using object-oriented techniques. For the most part, it encapsulated everything that we've covered up through this point in the series (except, obviously, inheritance).

 To that end, be sure to catch up on the following articles:

 It's a lot, I know, but remember: The goal of the series is to prepare the absolute beginner with everything that's necessary to being working with PHP and writing WordPress plugins using object-oriented techniques.

 To that end, I've decided to begin wrapping up this series with the a two-part article (with a third, final part serving as a summary) that offers a segue into the next topic of development for aspiring PHP programmers: Inheritance.

 Again, for those who are more experienced programmers, then inheritance is not a target subject matter for you; however, if you're a beginner, then inheritance is one of the concepts that's easy to grasp, a little more challenging to implement (believe it or not), and that can cause even more confusion when it comes to topics such as polymorphism (which we'll talk about later)

 Over the next two articles, I aim to cover all of the above along with sample code to back it up. But before we look at ay ofcode, I think it's important to understand the concepts of importance, to look at a few of the steps necessary to prepare object-oriented code for inheritance.

 In this article, we're going to bedefining inheritance, trying to form a conceptual model of what's actually going on, examining the nuances of what are known as base classes and subclasses, as well as some of the reserved keywords in the language that must be adjusted in order to support inheritance through out classes.

 So with that set aside as our roadmap for the article, let's go ahead and get started.

 Inheritance Defined

 Unlike a number of other programming terms, inheritance is actually a word that describes it's concept pretty well. Straight from Wikipedia:

 In object-oriented programming (OOP), inheritance is when an object or class is based on another object or class, using the same implementation. It is a mechanism for code reuse. The relationships of objects or classes through inheritance give rise to a hierarchy.

 Relatively clear, isn't it? But I think we can do better.

 Earlier in this series, we talked about how many of the more common programming languages use examples such as Animals and Vehicles as a way to demonstrate the concept of object-oriented programming.

 After all, the idea behind object-oriented programming is that we should be modeling real-world objects? Well, sort of. But how many times have you seen a physical Blog_Post?

 Exactly.

 As such, I always like to try to put things in the perspective of something that's far more tangible, more practical, and that's more closely related to the content that we'll actually be creating.

 With that said, what's an adequate way we can describe inheritance within the context of object-oriented programming that doesn't wreck the concept through the use of trivial examples?

 Let's try this:

 Inheritance is when one class serves as the parent class for a child class that provides a number of attributes and methods common to both the parent and child; however, the child as the ability to introduce it's own attributes.

 In the quote above, we're using a couple of terms like "parent class" and "child class" each of which we'll clarify in a little bit, but the point is that we can literally create a hierarchy of classes all of whichinherit information from their parent classes.

 Perhaps even neater, whenever you're working with a child class and you want to take advantage of attributes and functions defined in the parent class or the base class, you can easily do so with no extra code.

 But we're getting ahead of ourselves. Before we do that, let's make sure that we can get a conceptual model of what inheritance looks like. After all, although we're writing code, we're trying to provide a model that not only represents an actual object, but creates a relationship between the objects, too.

 Visualizing Inheritance

 Before we go any further, let's take a look at a very simple class diagram as to how inheritance works.

[image:]Note that we're using three classes:

 	
 Content which will serve as the base class and that represents a generic type of information that holds data for other, more specific types of content.

 	
 Comment which represents a comment on a blog post. This class contains information that it inherits from Content and that it defines within itself.

 	
 Post also inherits from Content which represents a single blog post. It contains general Content information, but also contains its own information specific to that class.

 Now, this is clearly a simplified example of inheritance, but at its core thisis how inheritance works. In a future article, we'll take a look at how instantiation, data access, and other features work, as well.

 But first, we still need to clarify a few terms and make sure that we have all of the proper information.

 Class Jargon

 As we've touched on earlier in this series, there are a number of terms that we've used all of which are key to understanding how the various pieces of inheritance work together.

 To that end, it's important to define some common definitions for the words that we're using not only because of how we're using them throughout this article because you're not only going to see them used here, but you're going to see them used elsewhere and you're going to see them used interchangeably in other articles throughout the web:

 	A parent class, also referred to as a base class, is the class from which other classes inherit information as demonstrated in the illustration above. It maintains a set of properties and functions.

 	Note that some of the functions that are available in the base class to third-party classes, the child classes, oronly within the base class itself.

 	The child class, typically called the subclass, is the class that inherits information, data, and functionality from its parent class.

 	We'll look at code about this in the next post; however, note that access to data only goes one way. That is, subclasses can access information in their base class, but base classes are unaware of their subclasses.

 Thisshould clear up a lot of of the terminology around this; however, if not, think of it in terms of, say, a family tree where you have parents and children. Children inherit traits from their parents, but parents do not inherit traits from their children.

 Note also that, in programming, some developers want to introduce what's called "multiple inheritance" which basically means that a single class can inherit properties and methods from multiple classes.

 Not only is this restricted in PHP, but it's also outside the scope of this particular series.

 An Aside for Abstract Classes

 For those who are a little more familiar with the concept of inheritance, then you're likely also familiar with the concept of abstract classes.

 Then again, if you're familiar with the concept of abstract classes, I'd argue that you're not a beginner and you aren't really the target audience for the content that we're reaching with this article.

 So depending on the feedback on this article, this series, and if others are interested, perhaps we can do a follow-up article or a couple of articles that covers this exact topic.

 Coming Up Next...

 In the next article, we're going to continue our discussion on inheritance as we take a look at how to implement it within PHP.We're also going to be taking a look at how subclasses can access data from their parents, and how parent classes can secure information within themselves

 In the meantime, be sure to leave any feedback, questions, and/or comments about inheritance in the comment feed and I'll look to address them here or in the next post.

 Until then!

 Object-Oriented Programming in WordPress - Inheritance II - Tuts+ Code Article

 http://code.tutsplus.com/articles/object-oriented-programming-in-wordpress-inheritance-ii--cms-21457

 In the previous article, we introduced the concept of object-oriented inheritance, attempted to place it laymen's terms, and then also took a high-level look at the conceptual model of how it works within the context of programming.

 But before we go any further and/or if you're just joining in the series, please review everything we've covered thus far by reading the previous articles:

 Yes - we've covered a lot, but in order to lay the foundation for a beginner to have a strong place from which to start writing object-oriented PHP, there's a lot to examine.

 With that said, inheritance is where we begin getting into the intermediate topics of the paradigm, so this will be the final article that provides a look at the beginner concepts after which we'll end the series with a summary post.

 Inheritance Reviewed

 Recall that we defined inheritance as the following:

 Inheritance is when one class serves as the parent class for a child class that provides a number of attributes and methods common to both the parent and child; however, the child as the ability to introduce it's own attributes.

 It's a bit less formal than what you may find in an academic book, or even on Wikipedia, but it still explains the idea in terms that illustrate the point.

 In this article, we'll review all of the necessary code, functions, and reserved words related to the topic,we're going to take a look at how we can implement it within PHP in a very, very simple platform-agnostic way,and then we'll review an actual implementation of where inheritance is at play within WordPress.

 So with that set as our roadmap for the article, let's go ahead and get started.

 PHP Facilities

 In order to implement inheritance in object-oriented PHP, there are a number of reserved words with which we need to familiarize ourselves. Luckily, most of the words we've already covered, and those that we haven't are clear enough such that it's easy to remember them.

 So before we dive into looking at code, let's take a look at all of the reserved words in the language that we need to know so that we can begin to actually get into creating something.

 	
 extends is reserved word that indicates that one class is the child of another class. For example, in our previous article, a Post extends Content. We'll see this in play soon.

 	
 private is an attribute that is applied to properties and functions that mean they are accessibleonly within the context of the class in which they are defined.

 	
 protected is similar to private with the exception that the properties and methods that are marked as such can be accessed by the given class and any child classes.

 	
 public is the opposite of private in that it means any class - the given class, a subclass, or a third-party class - can access the property or method in order to change it's information or call the function.

 You also need to be familiar with the :: operator, but we'll cover that a little bit later in the article when we begin looking at code.

 And that's it - nothing terribly daunting, is it? And what's even better is that if you've been following along with us throughout this series, then you're likely familiar with every word save for extends.

 Anyway, with that said, let's start working on an example.

 Some Example Code

 In order to get started writing some example code, we need to lay out exactly what it is that we're going to be trying to model (after all, that's what code does, isn't it?).

 In keeping consistent with the theme used throughout this series - especially in the last article - we'll have a parent class called Content, and two child classes each of which will be named Comment and Post, respectively.

 This will allow us to see how properties and methods exist within a single class, and how children can access attributes of their parents, as well as how parents can protect their properties and functions from their children, as well.

 But implementation will demonstrate far more than talking about it, so let's started writing some code.

 The Parent Class

 In our example, the parent class is going to be the Content because both of the subclasses - that is, the Post and the Comment - are types of content that have unique information associated with them that is not specific to the Content class.

 The key to inheritance is to identify all of the properties and methods that are common across all of the classes and keep them defined in the parent class or, in our class, in Content.

 Though this can vary based on how you view this, we'll setup Contentsuch that it includes:

 	a date on which the content was published

 	an author

 	a method for saving the content

 	a method for formatting the content

 	a method for retrieving the content

 	and a method for retrieving the content author

 First, we'll look at the code, then we'll explain everything that's going on with it.

<?php

class Content {

 protected $publish_date;

 protected $author;

 private $content;

 public function __construct() {

 date_default_timezone_set('GMT');
 $date = new DateTime();

 $this->publish_date = $date->format('Y-m-d H:i:s');
 $this->author = '';

 }

 public function save($author, $content) {

 $this->author = $author;
 $this->content = $this->format_content($content);
 $this->content;

 }

 public function read() {
 return $this->content;
 }

 private function format_content($content) {
 return strip_tags(stripslashes($content));
 }

 public function get_author() {
 return $this->author;
 }

}

 As previously mentioned, we have two protected attributes and a private attribute. Recall that this means that all of the subclasses can access the $publish_date and the $author, butonly the Content can access the $content attribute.

 Also note that much of the code that you see in the above class is basic object-oriented PHP. There's nothing that stands out that deals directly with inheritance other than some of the access modifiers that we've declared. That is to say that it's relatively common to code we've seen thus far in this tutorial.

 One of the things that's worth noting is that the private function is in place to demonstrate two things:

 	How private functions are only accessible within the context of the class in which its defined.

 	Strips any tags and slashes from the content so that markup cannot be saved with the content.

 Of course, this code isn't connected a database or a file system or anything, but the point still remains.

 Note that, in the code above there are a couple of things that we've needed to add in order to satisfy PHP's requirements. They are beyond the scope of this article, but it's worth pointing out here:

 	The code to date_default_time_set is required to set the timezone off of which the time can be retrieved.

 	The constructor is responsible for initially setting the publish date of the content, and it initializes the author property to an empty string. This is so that a Post can have its own author and the Comment can have its own author, as well. As we'll see later, a Comment can even override the default publish date.

 Note also that we're able to retrieve the content from the read method and we're able to get the author from the get_author function.

 The First Child

 Next, let's go ahead and create the Post subclass. First, we'll take a look at the code and then we'll see how it interacts with the Content class we just created.

<?php

class Post extends Content {

 public function __construct() {

 parent::__construct();
 $this->author = 'Tom McFarlin';

 }

 public function post($content) {
 $this->format_content($content);
 }

}

 The class appears small, right? There are no properties - because it inherits them from the Content class - and there are only two functions, one of which is unique to the class - post.

 Notice that in the constructor, we first make a call to the parent constructor using the :: operator. You can read much more about this in the manual, but suffice it to say that the operator is reserved to reference a number of difference things outside of the class in which it is defined. In our case, that's the call to the parent's constructor.

 Next, I've opted to set my name as the author of the post. Notice that I'm using the $this keyword. Because the subclass inherits properties from its parent, it can refer to those properties and if they were defined within itself.

 Note that this is possible not just because Post extends Content but because the property is marked as protected in Content, as well. If it were marked as private, this would not be possible.

 The Second Child

 Now that we've created the Post class, we also have the Comment class which, recall, represents someone leaving a a comment on a post. Were this production-level code, there would be far more code: We would need to relate a comment to a post, determine if a comment is a reply to an existing comment, mark a status of a comment, and so on.

 But for the purposes of demonstratinginheritance, we're leaving all of that out and focusing only on the things that can drive the concepts.

<?php

class Comment extends Content {

 public function __construct() {
 parent::__construct();
 }

 public function add($comment) {
 $this->save('John Doe', $comment);
 }

}

 As you can see, the Comment code isn't much different from the Post code. To a degree - this is good because it shows that we've abstracted the proper parts into our base class.

 Anyway, notice that after we construct the Comment, we make our call to the parent constructor.Next, we define the add method which is responsible for taking the incoming comment and then saving it by passing the comment author and it's content to the save method.

 The nice thing is that the save method is already defined within the base class which also handles all of the formatting through the use of a private function, so we gain that functionality as we create our child class.

 Working with The Example

 With that done, let's run a couple of examples to show how the pieces fit together. To make sure this code executes, all you need is a web server, a directory out of which to run PHP scripts, and a text editor.

 First, we'll create an instance of Content and then we'll call a debug statement so that we can see what constitutes an instance of the class.

$content = new Content();
var_dump($content);

 Permitting all works correctly, you should see everything that's above.

 Next up, let's go ahead and create a post. Since we're setting all of the information in the context of the class, all we really need to do is call a function on the class in order to display the information.

 For example:

$post = new Post();
echo 'The post author is: ' . $post->get_author();

 Again, since we've set everything up in the code itself, simply calling the method demonstrates the concept.

 Finally, we can create a Comment, call the add method on an instance of the class, attempt to pass in malicious code (only to see it stripped out by our code). If everything goes well, you should see the following:

$comment = new Comment();
$comment->add('<script type="text/javascript">alert("This is my comment.");</script>');
echo 'The comment reads: ' . $comment->read();

 And that's it: Our simple demonstration of inheritance.

 Inheritance in WordPress

 When it comes to looking at inheritance in WordPress, the very first thing that comes to mind for myself - and likely other developers - is the Widgets API. The reason I say this is because the API is powered by inheritance.

 Sure, widgets can be created without using the API, but I'd argue that's a misstep in development. Why make things more complicated for yourself when there's already a foundation in place to do it? But I digress.

 The nice thing about this particular API is that it showcases all of the high-points of object-oriented programming and inheritance at work. For example, here's a piece of sample code taken directly from the Codex:

<?php

class My_Widget extends WP_Widget {

 /**
 * Sets up the widgets name etc
 */
 public function __construct() {
 // widget actual processes
 }

 /**
 * Outputs the content of the widget
 *
 * @param array $args
 * @param array $instance
 */
 public function widget($args, $instance) {
 // outputs the content of the widget
 }

 /**
 * Outputs the options form on admin
 *
 * @param array $instance The widget options
 */
 public function form($instance) {
 // outputs the options form on admin
 }

 /**
 * Processing widget options on save
 *
 * @param array $new_instance The new options
 * @param array $old_instance The previous options
 */
 public function update($new_instance, $old_instance) {
 // processes widget options to be saved
 }
}

 Now that we've covered the conceptual model, looked at the keywords and methodology, written our own code, and created our own example, this should be relatively easy to follow.

 But here's the thing: One of the best ways to get better at writing any type of code is to continually practice the concepts. That is, to explore the ideas written by other people who have done more advanced things that you in prior work.

 Case in point, take a look at the first example provided in the WordPress Codex. And if you're working with a later version of PHP that supports features such as namespaces (a slightly more advanced topic), then check out the second example, as well.

 The more you review the code and tease it apart, the more you are to learn about it. But going any further than that in this article will take us out of scope of the entire series.

 To The End

 At this point, we've covered all of the beginner material necessary to lay the foundation for a beginner's guide to writing object-oriented PHP. In the final article, we'll provide a summary of everything we've covered so that we have a single reference for the big ideas that can be bookmarked, saved, or referred to later.

 Additionally, we'll have a short period of discussion on a follow-up series, but we'll save that until then.

 For now, if you have any questions, comments, and/or feedback on the content, code, or examples above, feel free to do so in the comment section below.

 Object-Oriented Programming in WordPress - A Summary - Tuts+ Code Article

 http://code.tutsplus.com/articles/object-oriented-programming-in-wordpress-a-summary--cms-21519

 Over the last 12 posts, we've taken a look at the basics of PHP, the basics of object-oriented programming, how to do so within the context of WordPress, and we've even looked at the beginning of more intermediate concepts such as inheritance.

 At this point, it's time to draw this beginner's series to a close but prior to doing so, I'd like to provide a summary of each of the articles so that we not only have a refresher of the everything that we've done, but so that we also have a single summary page to bookmark for reference.

 With that said, let's review everything we've covered up to this article. We'll include links back to the original article, short descriptions, and other pertinent information.

 A Review of Object-Oriented Programming in WordPress

 In the first post of the series, we discussed where we were headed with the articles that were to follow. In short, we provided a high-level outline as to what we'd be discussing, and then moved forward from there.

 Perhaps the most important take away from this article was understanding "where do I start?" Which is a question many people ask when getting started with programming.

 To that, we said:

 But those who have been at it for a significant amount of time often forget what it was like when originally trying to figure out how to decipher code, understandwhysomething was written the way that it was,howthe author knew to use what function and where, and determine the rationale behind certain implementation decisions.

 We've all been there at some point, right? We've looked at the code, tried to figure out the flow of control, and at one time asked "where do I even start?"

 And the purpose of this series is to answer that question.

 And so that's exactly what we aimed to do with the following points that were covered each in their own article.

 1. Classes

 The purpose of this post was to define the foundation of object-oriented programming - classes. First, we mentioned that classes are typically defined as the following:

 A class is a blueprint for creating an object.

 But we also recognized that this is a particularly confusing for most people especially if they're just beginning object-oriented programming.

 So instead, we talked about class in terms of what characteristics it defines:

 So let's generalize this idea to objects. In fact, let's substitute one word for another:

 A noun is an object.

 An adjective an an attribute (or a property).

 A verb is a method (or a function).

 Additionally, we looked at both good and bad examples as to what defines a class, and we worked on defining a mental model for how to pictures classes when working with them

 This ultimately laid the ground work for the plugin that we'd be writing in the future. But first, we needed to make sure that we had a firm understanding of the basics of PHP before moving into the more advanced feature of classes.

 2. Types

 In this article, we talked about the two types that exist within WordPress:

 	Simple Types

 	Complex Types

 And then we defined each of the above as such:

 Simple data types are defined as such because the data that they represent is, y'know,simple. That is to say that it will normally fall under the banner of true, false, decimals, and words and/or sentences.

 And then we said:

 The two primary complex datatypes that we're going to focus on in this series as arrays and objects. There are more, but they are outside the scope of this series, so if you're interested, then feel free to take a look atthe PHP manual, but I warn you: if you're an absolute beginner, the content may feel a little overwhelming.

 In short, examples of the above can be illustrated as:

 	booleans

 	integers

 	floating point numbers

 	strings

 	arrays

 	objects

 	...and more

 Of course, these are primarily useful once we start using them within the context of more advanced features such as conditional statements and control structures.

 3. Control Structures

 In the first article in theControl Structures series, we talked about conditional statements.

 First, recall that:

 "Control Structures" is a fancy term term that describes how we can,ahem,control how the code flows through our program based a number of factors.

 The two control structures that we talked about are if/then statements and switch/case statements, then we looked at examples of each. On top of that, we employed these in some of the code that we wrote in either our plugin or in our example of inheritance.

 In the same series, we talked about loops. Remember:

 Assume that we have a set of data, perhaps a set of 10 posts, and that we want to loop through and print out the title and date of each post. Loops allow us to do this.

 The list of loops at which we looked included:

 And we looked at examples of each and how to use them while iterating through a variety of data structures.

 4. Functions and Attributes

 After covering some of the foundational aspects of PHP development, we moved on to covering functions - which can still be used in procedural programming - and attributes, which are unique to object-oriented programming.

 To summarize, functions are used to complete a unit of work but they also use some of the aforementioned structures to help complete said work:

 Variables, conditionals, loops, and so on are responsible for completing a single unit work, as well; however, each of those work in conjunction with one another to achieve something slightly greater than themselves.

 We then took a look at an example of various functions - some which were extremely simply, others which were more complex that leveraged all of the above types, control structures, and loops.

 But that's not all: Since functions can exist within a class and help a class complete their work, they also work in conjunction with attributes (which are the adjectives of an object, if you recall from earlier in the article).

 The thing about attributes is this:

 They are nothing but variables as we've looked at earlier in the series, and they can hold any type of value be it a primitive data type such as a string, integer, boolean or it can reference a more complex data type such as an array or another object.

 The thing is, they aren't locked into a function. Instead, they live at the class level. And when they reside at the class level, there's a level of scope that they - along with the functions - must have.

 5. Scope

 From there, we began talking about scope.

 In short, scope refers to how variables and functions can be access from third-party objects or child objects within the program.

 In the article, we even looked at a high-level diagram as well as some source code that demonstrated the point.

 The key takeaway; however, is that scope can come in three different flavors:

 	
 public which is available to the class itself and all third-party classes

 	
 protected which is available to the class itself and all subclasses

 	
 private which is available only to the class in which it is defined

 This became even more clear as we began building our plugin using what we've learned.

 6. Building The Plugin

 In theBuilding The Plugin series, we first talked about exactly what we'd actually be building and then we actually began to implement the plugin.

 Throughout this process, we learned the importance of planning out the plugin before we actually begin implementation so that we have a roadmap, of sorts, in order to know where we're headed.

 After doing that, we then began the actual implementation of the ideas that we had outlined to the point where we had a fully functional plugin that covered exactly everything we had covered up to this point.

 In fact, we made the plugin available for download on GitHub.

 But we weren't done yet. After that, we needed to document the plugin using proper code comments to explicate what each of our files, classes, attributes, and methods do.

 7. Document the Plugin

 In this series of articles, we first talked about the PSR standards as well as the WordPress Coding Standards and we began documenting the basics of our plugin.

 However, it wasn't until the second part of the series that we really began to employ the documentation strategies as providing in the WordPress Coding Standards. In this post, we rounded out the rest of our documentation efforts by providing comments for every class, attribute, function, and even require statement that exists within the plugin.

 Ultimately, this rounded out development of the plugin and allowed us to transfer our discussion to a more intermediate topic.

 8. Inheritance

 Over the next two posts, we covered one of the more intermediate topics of object-oriented programming: Inheritance.This wasn't meant to be an all inclusive-primer on the topic, but it was meant to be enough to help those of you with a budding interest in object-oriented programming in PHP become familiar with how it works.

 In the first article, we took a look at some of the fundamentals as well as how it's used throughout the WordPress application specifically when using widgets.

 In the final article, we built our own implementation of inheritance that, although very simplistic, provided a workable demonstration for how inheritance works within PHP.

 Conclusion

 Obviously, we have covereda lot of content in this series. Hopefully, those of you who are just getting started with working in WordPress and object-oriented programming in general have found it useful.

 Though I'm not opposed to running another series of advanced topics, I'm more curious about your feedback, comments, and questions on the current series. Please feel free to offer that up in the comment feed.

 As far as any future series are concerned, let me know and we'll see what we can do.

 Other than that, good luck with your endeavors with WordPress, object-oriented programming, and so on. I can't wait to see what you come up with!

 OEBPS/localized_resources/rdb_epub_4326125194862290765.jpg
ﬁtb(f:f 857
I

OEBPS/localized_resources/rdb_epub_8399345835732049169.jpg
[single-post-meta-manager

EIINE = EEEXfER]

;e)(] (@

FAVORITES

Appl

ns

751 tommcfarlin
@ AirDrop

[Desktop

[Documents
© Downloads
1 Movies

2 Dropbox
{21 Google Dr

Name

v 63 admin
& class-single-post-meta-manager-admin.php
v Gl css
& single-post-meta-manager-admin.css
& CHANGES.md
v G includes
& class-single-post-meta-manager-loader.php
& class-single-post-meta-manager.php
v G languages
o LICENSE.txt
& README.md
& single-post-meta-manager.php

Dat

Tou:
Tod:
Tod:
Tod:
Tod:
Tod:
Tod:
Tod:
Tod:
Tod:
Tod:
Tod:

OEBPS/localized_resources/rdb_epub_5266723968255437461.jpg
[, DuTRA T IR

Taparbies & Wlbods

C oM ERT

Popardes o Wlobuds

A

et ¢ 1y

OEBPS/cover.jpg
OOP in WordPress

@ Readlists

OEBPS/localized_resources/rdb_epub_189647634475884501.jpg
| ——

M t

OEBPS/localized_resources/rdb_epub_5013034856962444429.jpg

